A new perspective on paranormed Riesz sequence space of non-absolute type

  • Authors

    • Murat Candan Inonu University
    2015-11-24
    https://doi.org/10.14419/gjma.v3i4.5573
  • Paranormed sequence space, alpha-, beta- and gamma-duals and matrix mappings.
  • Abstract

    The current article mainly dwells on introducing Riesz sequence space \(r^{q}(\widetilde{B}_{u}^{p})\) which generalized the prior studies of Candan and Güneş [28], Candan and Kılınç [30]  and consists of all sequences whose \(R_{u}^{q}\widetilde{B}\)-transforms are in the space \(\ell(p)\), where \(\widetilde{B}=B(r_{n},s_{n})\) stands for double sequential band matrix \((r_{n})^{\infty}_{n=0}\) and \((s_{n})^{\infty}_{n=0}\) are given convergent sequences of positive real numbers. Some topological properties of the new brand sequence space have been investigated as well as \(\alpha\)- \(\beta\)-and \(\gamma\)-duals. Additionally, we have also constructed the basis of \(r^{q}(\widetilde{B}_{u}^{p})\). Eventually, we characterize a matrix class on the sequence space. These results are more general and more comprehensive than the corresponding results in the literature.

  • References

    1. [1] F. BaÅŸar, Summability Theory and Its Applications, Bentham Science Publishers, e-books, Monographs, xi+405 pp., Ä°stanbul 2012, ISB:978-1-60805-252-3.

      [2] I. J. Maddox, Paranormed sequence spaces generated by infinite matrices, Proc. Cambridge. Philos. Soc. (64)(1968), 335--340.

      [3] I. J. Maddox, Spaces of strongly summable sequences, Quart. J. Math. Oxford, (18) (2) (1967), 345--355.

      [4] S. Simons, The sequence spaces and , Proc. London Math. Soc., (15) (3) (1965), 422--436.

      [5] H. Nakano, Modulared sequence spaces, Proc. Japan Acad. (27) (2)(1951), 508--512.

      [6] P.N. Ng and P.Y. Lee, Cesà ro sequence spaces of non-absolute type, Comment. Math. Prace Mat. (20) (1978), no.2, 429-433.

      [7] B. Altay and F. BaÅŸar, On the paranormed Riesz sequence spaces of non-absolute type, Southeast Asian Bull. Math. (26) (2002), 701--715.

      [8] B. Altay, F. BaÅŸar, M. Mursaleen, On the Euler sequence spaces which include the spaces and I, Inform. Sci. (176) (10)(2006), 1450--1462.

      [9] M. Mursaleen, F. BaÅŸar, B. Altay, On the Euler sequence spaces which include the spaces and II, Nonlinear Anal. (65) (3)(2006), 707--717.

      [10] E.E. Kara, M. Öztürk, M. Başarır, Some topological and geometric properties of generalized Euler sequence spaces, Math. Slovaca (60) (3)(2010), 385--398.

      [11] E. Malkowsky and E. SavaÅŸ, Matrix transformations between sequence spaces of generalized weighted means, Appl. Math. Comput. (147) (2004), 333--345.

      [12] B. Altay, F. BaÅŸar, Generalization of the sequence space derived by weighted mean, J. Math. Anal. Appl. (330) (2007), 174--185.

      [13] C. Aydın and F. Başar, Some new sequence spaces which include the spaces and , Demonstratio Math. (38) (3)(2005), 641-656.

      [14] C. Aydın and F. Başar, Some generalizations of the sequence spaces , Iran. J. Sci. Technol. Trans.A.Sci. (30) (A2)(2006), 175--190.

      [15] E. Malkowsky, V. Rakocevic, S. Zivkovic, Matrix transformations between the sequence space and certain spaces, Bull. Cl. Sci. Math. Nat. Sci. Math. (27) (2002), 33-46.

      [16] F. BaÅŸar and B. Altay, On the space of sequences of -bounded variation and related matrix mappings, Ukranian Math. J. (55) (2003), 136-147.

      [17] B. Altay and F. BaÅŸar, Some paranormed sequence spaces of non-absolute type derived by weighted mean, J. Math. Anal. Appl. (319) (2)(2006), 494--508.

      [18] B. Choudhary and S. K. Mishra, On Köthe-Toeplitz duals of certain sequence spaces and their matrix transformations, Indian J. Pure Appl. Math. (24) (1993), no.5, 291--301.

      [19] M. Mursaleen, A.K. Noman, On some new sequence spaces of non-absolute type related to the spaces and I, Filomat (25) (2)(2011), 33--51.

      [20] M. Kirişçi, F.Başar, Some new sequence spaces derived by the domain of generalized difference matrix, Comput. Math. Appl. (60) (5)(2010), 1299--1309.

      [21] M. Candan, Domain of the double sequential band matrix in the classical sequence spaces, J. Inequal. Appl. (2012), 2012:281, 15 pp.

      [22] F. Başar, M. Kirişçi, Almost convergence and generalized difference matrix, Comput. Math. Appl. (61) (3)(2011), 602--611.

      [23] M. Candan, Almost convergence and double sequential band matrix, Acta. Math. Sci. (34B) (2)(2014), 354--366.

      [24] M. Candan, A new sequence space isomorphic to the space and compact operators, J. Math. Comput. Sci. 4 (2014), No.2, 306-334.

      [25] M. Candan, Domain of the double sequential band matrix in the spaces of convergent and null sequences, Adv. Difference Edu.(2014), 2014:163, 18 pp.

      [26] M. Candan, Some new sequence spaces derived from the spaces of bounded, convergent and null sequences, Int. J. Mod. Math. Sci.,(12) (2) (2014), 74-87.

      [27] M. Candan, A new approach on the spaces of generalized Fibonacci difference null and convergent sequences, Math. AEterna. (1) (5) (2015), 191-210.

      [28] M. Candan and A. Güneş, Paranormed sequence space of non-absolute type founded using generalized difference matrix, Proc. Nat. Acad. Sci. India Sect. A., (85) (2) (2015), 269-276.

      [29] M. Candan and K. Kayaduman, Almost convergent sequence space derived by generalized Fibonacci matrix and Fibonacci core, Brithish J. Math. Comput. Sci., (7) (2) (2015), 150-167.

      [30] M. Candan and G. Kılınç, A different look for paranormed Riesz sequence space of derived by Fibonacci Matrix, Konuralp J. Math. Vol.3, No.2, (2015), 62-76.

      [31] M. Candan, E.E. Kara, A study on topological and geometrical characteristics of new Banach sequence spaces, Gulf J. Math. Vol.3, No.4, (2015), 67-84.

      [32] M. Kirişçi, On the spaces of Euler almost null and Euler almost convergent sequences, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 62(1), 1-16 (2013).

      [33] M. Kirişçi, Almost convergence and generalized weighted mean, AIP Conf. Proc., vol. 1470, pp. 191-194 (2012).

      [34] M. Kirişçi, Almost Convergence and Generalized Weighted Mean II, J. Inequal. Appl. (2014),2014:93, 13 pp.

      [35] B. Altay and F. BaÅŸar, Some paranormed sequence spaces derived by generalized weighted mean, J. Math. Anal. Appl. (319)(2006), 494--508.

      [36] H. Polat, V. Karakaya, N. ÅžimÅŸek, Difference sequence spaces derived by generalized weighted mean, Appl. Math. Lett. (24) (5)(2011), 608--314.

      [37] M. Başarır, On the generalized Riesz -difference sequence spaces, Filomat (24) (4)(2010), 35--52.

      [38] B. Altay, F. BaÅŸar, On the fine spectrum of the generalized difference operator over the sequence and , Int. J. Math. Sci. (18) (2008), 3005--3013.

      [39] S. Demiriz, C. Çakan, Some topolojical and geometrical properties of a new difference sequence space, Abstr. Appl. Anal. doi:10.1155/2011/213878, 14 pp.

      [40] M. Başarır, M. Öztürk, On the Riesz diference sequence space, Rend. Circ. Mat. Palermo (57) (2008), 377-389.

      [41] M. Başarır, Paranormed Cesà ro difference sequence space and related matrix transformation, Doğa Tr. J. Math. (15) (1991), 14--19.

      [42] M. Et, M. Işık, On pa-dual spaces of generalized difference sequence spaces, Appl. Math. Lett. (25) (10)(2012), 1486--1489.

      [43] M. Et, Generalized Cesà ro difference sequence spaces of non-absolute type involving lacunary sequence spaces, Appl. Math. Comput. (219) (17)(2013), 9372--9376.

      [44] M. Başarır, E.E. Kara, On the order difference sequence space of generalized weighted mean and compact operator, Acta. Math. Sci. (33B) (3)(2013), 1--18.

      [45] M. Başarır, E.E. Kara, On the difference sequence space derived by generalized weighted mean and compact operators, J. Math. Anal. Appl. (391) (2012), 67--81.

      [46] M. Başarır, M. Kayıkçı, On the generalized Riesz difference sequence space and beta-property J. Inequal. Appl. (2009), ID 385029, 18pp.

      [47] M. Başarır, E.E. Kara, On some difference sequence spaces of weighted means and compact operators, Ann. Funct. Anal. (2) (2)(2011), 116--131.

      [48] M. Başarır, E.E. Kara, On compact operators on the Riesz difference sequence space, Iran. J. Sci. Technol. Trans.(35A) (4)(2011), 279--285.

      [49] M. Başarır, E.E. Kara, On compact operators on the Riesz difference sequence space-II, Iran. J. Sci. Technol. Trans. (36A) (3)(2012), 371--376.

      [50] M. Başarır, M. Öztürk, On some Generalized difference Riesz Sequence Spaces and Uniform Opial Property, J. Inequal. Appl. (2011), 2011:485730, 17 pp.

      [51] Ş. Konca, M. Başarır, Generalized difference sequence spaces associated with a multiplier sequence on a real normed space, J. Inequal. Appl. (2013), 2013:335, 12 pp.

      [52] Ş. Konca, M. Başarır, On some spaces of almost lacunary convergent sequences derived by Riesz mean and weighted almost lacunary statistical convergence in a real normedspace, J. Inequal. Appl. (2014), 2013:81, 11 pp.

      [53] M. Candan, Ä°. Solak, On some Difference Sequence Spaces Generated by Infinite Matrices, International Journal of Pure and Applied Mathematics, V.25(1), 79-85, 2005.

      [54] M. Candan, Ä°. Solak, On New Difference Sequence Spaces Generated

      by Infinite Matrices, International Journal of Science and Tecnology, V 1(1), 15-17, 2006.

      [55] M. Candan, Some new sequence spaces defined by a modulus function and an

      infinite matrix in a seminormed space, J. Math. Anal., 3(2)(2012), 1-9.

      [56] Y. Yılmaz, M.K. Özdemir, İ. Solak, M. Candan, Operators on some vector-valued Orlicz sequence spaces, F.Ü. Fen ve Mühendislik Dergisi, 17(1), 59-71, (2005).

      [57] H. Kızmaz, On certain sequence spaces}, Canad. Math. Bull. (24) (2)(1981), 169--176.

      [58] B. Altay, F. BaÅŸar, The matrix domain and the fine spectrum of the difference operator on the sequence space , , Commun. Math. Anal., Commun. Math. Anal. (2) (2)(2007), 1--11.

      [59] F. BaÅŸar, B. Altay, On the space of sequences of bounded variation and related matrix mappings, Ukrainian Math. J. (55) (1)(2003), 136--147.

      [60] R. Çolak, M. Et, E. Malkowsky, Some Topics of Sequence Spaces, Lecture Notes in Mathematics, Fırat Univ. Elazığ, Turkey, 2004, pp. 1--63, Fırat Univ. Press, 2004, ISBN: 975-394-038-6.

      [61] R. Çolak, M. Et, On some generalized difference sequence spaces and related matrix transformations, Hokkaido Math. J.,(26) (3) (1997), 483--492.

      [62] E. Malkowsky, S.D. Parashar, Matrix transformations in space of bounded and convergent difference sequence of order , Analysis (17) (1997), 87--97.

      [63] H. Polat, F. BaÅŸar, Some Euler spaces of difference sequences of order , Acta Math. Sci. (27B) (2)(2007), 254--266.

      [64] B. Altay, On the space of summable difference sequences of order , , Stud. Sci. Math. Hungar. (43) (4)(2006), 387--402.

      [65] N.A. Sheikh, A.H. Ganie, A new paranormed sequence space and some matrix transformations, Acta Math. Acad. Paedago. Nyregy.,(28) (2012), 47-58.

      [66] A.H. Ganie, N.A. Sheikh, New type of paranormed sequence space of non-absolute type and a matrix transformation, Int. J. Of Mod. Math. Sci, (8) (2) (2013), 196-211.

      [67] K. -G. Grosse-Erdmann, Matrix transformations between the sequence spaces of Maddox, J. Math. Anal. Appl. (180) (1993), 223--238.

      [68] C.G. Lascarides, I.J. Maddox, Matrix transformations between some classes of sequences, Proc. Cambridge Philos.Soc. (68) (1970), 99--104.

  • Downloads

  • How to Cite

    Candan, M. (2015). A new perspective on paranormed Riesz sequence space of non-absolute type. Global Journal of Mathematical Analysis, 3(4), 150-163. https://doi.org/10.14419/gjma.v3i4.5573

    Received date: 2015-11-24

    Accepted date: 2015-11-24

    Published date: 2015-11-24