Analysis and forecast of Turkey unemployment rate

  • Authors

    • Hakan YILDIRIM Marmara University
    • Hülya BAÅžEÄžMEZ Marmara University
    2016-12-30
    https://doi.org/10.14419/gjma.v5i1.6841
  • , Autocorrelation Coefficient, Exponential Smoothing, Forecasting, Moving Averages, Unemployment Rate.
  • Abstract

    This research develops techniques which are useful in forecasting single variable time series data. The techniques used in this study are moving averages (MA), Single Exponential Smoothing (SES), Adaptive Response Rate Exponential Smoothing (ARRES), Holt’s Linear and Holt-Winter’s Trend and Seasonality. For the purpose of this study, secondary data of Turkey Unemployment Rate covering the period 1996 up to 2015 was obtained from the Turkish Statistical Institute (TurkStat). From the result obtained, Adaptive Response Rate Exponential Smoothing (ARRES) was found to be the best method to forecast the Turkey Unemployment rate since it produces the lowest Mean Square Error (MSE) value which is 1.519.

     

  • References

    1. [1] Alias Lazim, Introductory business forecasting: A practical approach (3rd Ed.), University Publication Centre (UPENA), UiTM (2011).

      [2] Armutlulu, İ.H., Sayısal yöntemler I: İşletmelerde Uygulamalı İstatistik, Alfa yayınları, (2000).

      [3] Billah, Baki, et al. "Exponential smoothing model selection for forecasting."International journal of forecasting, 22.2, (2006), 239-247.

      [4] Bowerman, Bruce L., and Richard T. O'Connell, Forecasting and time series: An applied approach, 3rd. (1993).

      [5] Constantin, S., “The unemployment in Europeâ€, Bulletin of the Transilvania University of Brasov. Economic Sciences. Series V, 8(2), (2015), 339.

      [6] Hanke, J.E. & Reitsch, A.G., Business Forecasting. 4th Ed. Needham Heights, MA: Simon & Schuster, (1991).

      [7] Lawrence, Kenneth D., Ronald K. Klimberg, and Sheila M. Lawrence.Fundamentals of forecasting using excel. Industrial Press Inc., 2009.

      [8] Makridakis, S. & Wheelwright, S.C., Forecasting Methods for Management, 5th Ed., New York: John Wiley & Sons, (1989).

      [9] Montgomery, Alan L., et al. "Forecasting the US unemployment rate." Journal of the American Statistical Association 93.442 (1998): 478-493. https://doi.org/10.1080/01621459.1998.10473696.

      [10] Nazim, Ahmad, and Asyraf Afthanorhan. "A comparison between single exponential smoothing (SES), double exponential smoothing (DES), holt’s (brown) and adaptive response rate exponential smoothing (ARRES) techniques in forecasting Malaysia population." Global Journal of Mathematical Analysis 2.4 (2014): 276-280. https://doi.org/10.14419/gjma.v2i4.3253.

      [11] Turkish Statistical Institute, Household Labor Force Statistics 2011, ISSN 0259-5036, (2011), p.23.

      [12] Ümit, A. Ö. and Bulut. E., "Türkiye'de İşsizliği Etkileyen Faktörlerin Kismi En Küçük Kareler Regresyon Yöntemi İle Analizi: 2005-2010 Dönemi." Dumlupınar Üniversitesi Sosyal Bilimler Dergisi 37.37, (2015).

      [13] Yıldırım, H. “Dünya Ham Petrol Fiyatlarının Analizi ve Tahmini: Ãœretimle Birlikte Fiyatlarda Artmakta mı?â€, Marmara Ãœniversitesi Sosyal Bilimler Enstitüsü Öneri Dergisi, 7.26, (2006), 131-142.

  • Downloads

  • How to Cite

    YILDIRIM, H., & BAÅžEÄžMEZ, H. (2016). Analysis and forecast of Turkey unemployment rate. Global Journal of Mathematical Analysis, 5(1), 11-15. https://doi.org/10.14419/gjma.v5i1.6841

    Received date: 2016-10-05

    Accepted date: 2016-11-17

    Published date: 2016-12-30