Effect of spark plasma sintering process on the microstructure and mechanical properties of Nano crystalline hydroxyapatite ceramics prepared by hydrolysis in polyol medium

  • Authors

    • Abderrahmen Mechay *Laboratoire des Sciences des Matériaux et d’Environnements, Faculté des Sciences de Sfax, 3018 Sfax, Tunisie *Laboratoire des Sciences des Procédés et des Matériaux, CNRS-UPR 9001, Université Paris 13, PRES Sorbonne Paris Cité, 93430 Villetaneuse, France
    • Hafed Elfeki Laboratoire des Sciences des Matériaux et d’Environnements, Faculté des Sciences de Sfax, 3018 Sfax, Tunisie
    • Fréderic Schoenstein
    • Florent Tétard
    • Noureddine Jouini
    2014-06-18
    https://doi.org/10.14419/ijac.v2i2.2393
  • The aim of the study was to investigate the role of microstructure and porosity on the mechanical behaviour of sintered hydroxyapatite synthesized by polyol process. This process describes a new approach for the synthesis of hydroxyapatite nanoparticles, which involves precipitation and hydrolysis reactions conducted in polyol medium. In the present work a non-conventional technique, spark plasma sintering, was used to consolidate such nanocrystalline apatites at non-conventional, very low temperatures (T < 300°C) so as to preserve the surface hydrated layer present on the nanocrystals. The hydroxyapatite nanoparticles have been successfully conducted by spark plasma sintering process, resulting in a dense HA compacts. Besides, the sintering behaviour of hydroxyapatite powders at different temperatures ranging was studied. The microstructure, Vickers microhardness, nanoindentation and density are described. Finally, the resulting mechanical properties determined on the microwave sintered samples (E = 136 ±4 GPa, HV = 8.2 GPa, and KIC= 1.6 ±0.03 MPa m1/2) are significantly higher than those usually reported in the literature, whatever the sintering process, and could allow the use of hydroxyapatite for structural applications.

    Keywords: Hydroxyapatite; Polyol; Spark Plasma Sintering; Mechanical Properties.

  • References

    1. Chaabouni, C. Chtara, A. Nzihou, H. El Feki, Study the effects of calcinations and evolution of crystallographic parameters of two Tunisian natural phosphates, International Journal of Advanced Chemistry, 2 (1) (2014) 24-26.
    2. Deptula, W. Oada, T. Olczak, A. Borello, C. Alvani, A. Bartolomeo, Preparation of spherical powders of hydroxyapatite by sol-gel process, J Non-Cryst Sol 147-148 (1992) 537.
    3. Mechay, H. Elfeki, F. Schoenstein, N. Jouini, Nanocrystalline hydroxyapatite ceramics prepared by hydrolysis in polyol medium, Chemi Phys Lett 541 (2012) 75.
    4. C.B. Ponton, R.D. Rawlings, Vickers indentation fracture toughness test Part I. Review of literature and formulation of standardized indentation toughness equation, Mater. Sci. Technol. 5 (1989) 865–872.
    5. D. Jézéquel, J. Guenot, N. Jouini, F. Fiévet, Submicrometer zinc oxide particles: Elaboration in polyol medium and morphological characteristics, J Mater Resea 10 (1995) 77-83.
    6. E. Champion, S. Gautier, D. Bernache-Assollant, Characterization of hot pressed Al2O3-platelet reinforced hydroxyapatite composites, J Mater Sci: Mater in Medic 7 (1996) 125-130.
    7. E.O. Martz, V.K. Goel, M.H. Pope, J.B. Park, Materials and design of spinal implants, J. of Biomed. Mater. Resea. 38 (1997) 267.
    8. G.K. Lim, J. Wang, S.C. Ng, C.H. Chew, L.M. Gan, Processing of hydroxyapatite via microemulsion and emulsion route, Biomat 18 (1997) 1433.
    9. H.M. Rietveld, A profile refinement method for nuclear and magnetic structures, J Applied Crystallography 2 (1969) 65-71.
    10. J.P. Yesinowski., H. Eckert, High-Resolution Structural Insights into Bone: A Solid-State NMR Relaxation Study Utilizing Paramagnetic Doping .J. Am. Chem. Soc. 109 (1987) 6274.
    11. J. Rodriguez-Carvajal, Recent advances in magnetic structure determination by neutron powder diffraction, Physica B: Condensed Matter 192 (1993) 55.
    12. J.R Groza, Consolidation of atomized NiAl powders by plasma activated sintering process, Scripta. Metallurgica et Materialia 30 (1994) 47.
    13. K. Sonoda, T. Furuzono, D. Walsh, K. Sato, J. Tanaka, Influence of emulsion on crystal growth of hydroxyapatite, Sol Sta Ioni 151 (2002) 321.
    14. L. Coronel, J.P. Jernot, F. Osterstock, Microstructure and mechanical properties of sintered glass. J. Mater. Sci. 25 (1990) 4866–72.
    15. L. L. Hench, Biomaterials: a forecast for the future, Biomaterials 19 (1998) 1419.
    16. L. L. Hench, The challenge of orthopaedic materials, Current Orthopaedics, 14 (2000) 7.
    17. L. Poul, S. Ammar, N. Jouini, F. Fievet, F. Villain, Synthesis of inorganic compounds (metal, oxide and hydroxide) in polyol medium : A versatile route related to the sol-gel process, J Sol-Gel Sci Tech 26 (2003) 261.
    18. L. Poul, S. Ammar, N. Jouini, F. Fievet, F. Villain, Metastable solid solutions in the system ZnO-CoO : synthesis by hydrolysis in polyol medium and study of the morphological characteristics, Sol Sta Sci 3 (2001) 31.
    19. M.C. Steil, J. Fouletier, M. Kleitz, P. Labrune, BICOVOX: Sintering and grain size dependence of the electrical properties, J Europ Ceram Soc 19 (1999) 815.
    20. M. Vallet-Regi, M.T. Gutiérrez-Rios, M.P. Alonso, M.I. Frutos, S. Nicolopoulos, Hydroxyapatite particles synthesized by pyrolysis of an aerosol, J Sol Stat Chemis 112 (1994) 58.
    21. P.E. Wang, T.K. Chaki, Sintering behaviour and mechanical properties of hydroxyapatite and dicalcium phosphate, J Mater Sc: Mater in Medic 4 (1993) 150-58.
    22. Rahaman MN. Ceramic processing and sintering. 2nd ed. Boca Raton, FL: CRC Press (2003).
    23. R.R. Rao, H.N. Roopa, T.S. Kannan, Solid state synthesis and thermal stability of HAP and HAP-β-TCP composite ceramic powders, Mater in Medici 8 (1997) 511.
    24. S. Bose, S.K. Saha, Synthesis of hydroxyapatite nanopowders via sucrose template sol-gel method, J Amer Ceram Soc 86 (2003) 1055.
    25. S. Lee, S. Jeong, D. Kim, S. Hwang, M. Jeon, J. Moon, ZnO nanoparticles with controlled shapes and sizes prepared using a simple polyol synthesis, Superlattices and Microstructures 43 (2008) 330.
    26. S.W. Freiman, Brittle fracture behavior of ceramics, J. Am. Ceram. Soc. Bull. 67 (1988) 392–402.
    27. T. Hattori, Y. Lwadate, Hydrothermal preparation of calcium hydroxyapatite powders, J Amer Ceram Soc 73 (1990) 1803.
    28. T. Li, Q. Li, J.Y.H. Fuh, P.C. Yu, L. Lu, C.C. Wu, Effects of AGG on fracture toughness of tungsten carbide, Mater Sci and Eng A 445-446 (2007) 587.
    29. W.P. Rothwell., J.S. Waugh., J.P. Yesinowski, High-resolution variable- temperature 31P NMR of solid calcium phosphate. J. Am. Chem. Soc. 102 (1980) 2637.
    30. Y. Sang, J.R. Groza, T.S. Sudarshan, K. Yamazaki, Diffusion donding of boron nitride on metal substrates by plasma activated sintering (PAS) process, Scripta Materialia 34 (1996) 1383-86.
    31. Y.W. Gu, N.H. Loha, K.A. Khora, S.B. Tora, P. Cheangb, Spark plasma sintering of hydroxyapatite powders, Biomaterials 23 (2002) 37.
  • Downloads

    Additional Files

  • How to Cite

    Mechay, A., Elfeki, H., Schoenstein, F., Tétard, F., & Jouini, N. (2014). Effect of spark plasma sintering process on the microstructure and mechanical properties of Nano crystalline hydroxyapatite ceramics prepared by hydrolysis in polyol medium. International Journal of Advanced Chemistry, 2(2), 80-84. https://doi.org/10.14419/ijac.v2i2.2393