Synthesis and characterization of polystyrene sulfonic acid-polyaniline and montmorillonite nanocomposites

  • Abstract
  • Keywords
  • References
  • PDF
  • Abstract

    Numerous polymer ingredients merged montmorillonite (MMT) has received a great deal of attention in the research field of clay-polymer nanocomposites, due to the enhancements in physical properties such as mechanical and thermal properties compared to their parent materials. MMT-polyaniline-polystyrene sulfonic acid nanocomposites containing different amounts of PANI and PSSA were prepared by the interaction of aniline monomer into pristine MMT together with cation intercalated MMT. It is followed by the subsequent oxidative polymerization of the aniline and PSSA in the interlayer spacing to give MMT-PANI-PSSA nanocomposites. X-Ray diffraction and Fourier-transform infrared spectroscopy results confirmed that PANI and PSSA have been inserted within the MMT interlayer. Thermal Gravimetric Analysis (TGA) shows that the improved thermal stability for the intercalated nanocomposites in comparison with the PANI clay nanocomposites. The thermal behavior of MMT-PANI-PSSA nanocomposites is analyzed in a wide range of temperatures. TGA analysis suggests that the PSSA-PANI of ratio 3:2 is thermally stable. Cyclic votlammogams of the PSSA-PANI- Ce(III) -MMT shows characteristic redox behavior of that appear in the Ce(IV)/Ce(III) under identical conditions together with the typical electrochemical behavior of PSSA. These prepared nanocomposites have several advantages over the other PSSA-MMT nanocomposites such as lesser sheet resistance, advanced hardness and improved thermal stability.

  • Keywords

    Clay-Polymer; Cyclic Votlammogams; Montmorillonite; Nanocomposite Redox Behavior.

  • References

      [1] Yehia, A. A., Akelah, A. M., Rehab, A., El-Sabbagh, S. H., El Nashar, D. E., Koriem, A. A., 2009. Preparation and Characterization of Polymer-Clay Nanocomposites for Specific Applications, Raw Materials and Applications, 580-588.

      [2] Michael, A., Philippe, D., 2000. Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials, Materials Science and Engineering, 28, 1-63.

      [3] Pomogailo, A. D., 2005. Hybrid Intercalative Nanocomposites, Inorganic Materials. 41, S47–S74.

      [4] Manias, E., Touny, A., Wu. L., Strawhecker, K., Lu, B., Chung T.C., 2001. Polypropylene/Montmorillonite Nanocomposites: A Review of Synthetic Routes and Materials Properties, Chem. Mater. 13, 3516–3523.

      [5] Pavlidou, S., Papaspyrides, C.D., 2008. A review on polymer-layered silicate nanocomposites, Prog. Poly. Sci. 33, 1119–1198.

      [6] Akat, H., Tasdelen, M.A., Prez, F. D., Yagci, Y., 2008. Synthesis and characterization of polymer/clay nanocomposites by intercalated chain transfer agent, European Polymer Journal, 44, 1949–1954

      [7] Liu, H., Kim, D.W., Blumstein, A., Kumar, J., Tripathy, S.K., 2001. Nanocomposite Derived from Intercalative Spontaneous Polymerization of 2-Ethynylpyridine within Layered Aluminosilicate: Montmorillonite, Chem. Mater. 13, 2756-2758

      [8] Kim, B. H., Jung, J. H., Kim, J. W., Choi, H. J., Joo, J., 2001. Physical characterization of polyaniline-Na+-montmorillonite nanocomposite intercalated by emulsion polymerization, Synth Met., 117:115-118

      [9] Arsalani, N., Hayatifar, N., 2005, Preparation and characterization of novel conducting polyaniline–perlite composites, Polym. Int., 54:933-938

      [10] Çelik, M., Önal, M., Intercalated polyaniline/Na-montmorillonite nanocomposites via oxidative polymerization, J. Polym. Res. (2007) 14:313–317

      [11] Gustavo M. do Nascimento,Vera R. L. Constantino,Richard Landers and Marcia L. A. Temperini, Aniline Polymerization into Montmorillonite Clay: A Spectroscopic Investigation of the Intercalated Conducting Polymer Macromolecules 2004, 37, 9373-9385

      [12] Wessling, B., 1997. Scientific and Commercial Breakthrough for Organic Metals, Synth. Met. 85, 1313-1318.

      [13] MacDiarmid, A. G., 1997. Polyaniline and polypyrrole: Where are we headed? Synth. Met., 84, 27-34.

      [14] MacDiarmid, A. G.; Epstein, A. In Frontiers of Polymers and Advanced Materials; Prasad, P. N., Ed.; Plenum Press: New York, 1984; p 251.

      [15] Cardoso, M.J.R., Lima, M.F.S., Lenz, D.M., Polyaniline Synthesized with Functionalized

      [16] Sulfonic Acids for Blends Manufacture, Materials Research, Vol. 10, No. 4, 425-429, 2007.

      [17] Yoshimoto, S., Ohashi, F., Ohnishi, Y., Nonami, T., 2004. Synthesis of polyaniline–montmorillonite nanocomposites by the mechanochemical intercalation method, Synth. Met. 145:265-270

      [18] Wu, Q., Xue, Z., Qi. Wang, F., 2000. Synthesis and characterization of PAn/clay nanocomposite with extended chain conformation of polyaniline, 41, 2029-2032

      [19] Ruiz-Hitzky, E.; Aranda, P. Anal. Quim. Int. Ed. 1997, 93,197.

      [20] Cardin, D. J., 2002. Encapsulated Conducting Polymers, Adv. Mater., 14, 553-563.<553::AID-ADMA553>3.0.CO;2-F.

      [21] Thiyagarajan, M.; Samuelson, L. A.; Kumar, J.; Cholli, A. L., 2003. Helical conformational specificity of enzymatically synthesized water-soluble conducting polyaniline nanocomposites J. Am. Chem. Soc., 125, 11502-11503.

      [22] Huang, J.; Kaner, R. B., 2004. A General Chemical Route to Polyaniline Nanofibers, J. Am. Chem. Soc., 126, 851-855.

      [23] Oral, A., Tasdelen, M.A., Demirel, A.L., Yagci, Y., Poly (cyclohexene oxide)/Clay Nanocomposites by Photoinitiated Cationic Polymerization via Activated Monomer Mechanism Journal of Polymer Science: Part A: Polymer Chemistry, Vol. 47, 5328–5335 (2009)

      [24] Optimization of Polymer Nanocomposite Properties Edited by Vikas Mittal, 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

      [25] Nese A, Sen S, Tasdelen MA, Nugay N, Yagci Y. Clay-PMMA nanocomposites by photoinitiated radical polymerization using intercalated phenacyl pyridinium salt initiators. Macromol Chem Phys 2006; 207(9):820–6.

      [26] R.M.G. Rajapakse, Kenji Murakami, H.M.N. Bandara, R.M.M.Y. Rajapakse, K. Velauthamurti, S. Wijeratne, Preparation and characterization of electronically conducting polypyrrole-montmorillonite nanocomposite and its potential application as a cathode material for oxygen reduction, Electrochimica Acta 55 (2010) 2490–2497.

      [27] Rajapaksae, R.M.G., Higgins, S.J., Velauthamurty, K., Bandara, H.M.N., Wijeratne, S., and Rajapakse, R.M.M.Y., (2010). Nanocomposites of poly (3,4-ethylenedioxythiophene) and montmorillonite clay: synthesis and characterization J. Comps. Mater.: 1-12.

      [28] Dias, H.V.R., Rajapakse, R.M.G., Krishantha, D.M.M., Wang, M.F.X. and Elsenbaumer, R. L., (2006). Copper catalyzed route to conducting polyaniline, Chem.Commun, 976-978.

      [29] Dias, H.V.R., Rajapakse, R.M.G., Krishantha, D.M.M., Wang, M.F.X. and Elsenbaumer, R. L., (2007). Eco-friendly synthesis of highquality polyanilne using a copper (II) scorpionate catalyst, J. Mater. Chem., 17: 1762-1768.

      [30] T. L. Porter M. P. Eastman and D. Y. Zhang M. E. Hagerman, Surface Polymerization of Organic Monomers on Cu (II)-Exchanged Hectorite, J. Phys. Chem. B, 1997, 101, 11106-11111.




Article ID: 6825
DOI: 10.14419/ijac.v4i2.6825

Copyright © 2012-2015 Science Publishing Corporation Inc. All rights reserved.