Immunoinformatic prediction about potential novel vaccine in surface antigen fragment protein of Toxoplasma gondii

  • Authors

    • Seyed Sajjad Hasheminasab 1Department of Parasitology, Faculty of Veterinary Medicine , University of Tehran, Tehran, Iran
    • Hossein Maghsood Department of Parasitology, Faculty of Veterinary Medicine , University of Tehran, Tehran, Iran
    • Sara Khalili Department of Parasitology, Faculty of Veterinary Medicine , University of Tehran, Tehran, Iran
    2016-01-10
    https://doi.org/10.14419/ijh.v4i1.5602
  • , Immunoinformatic, SAG1, Toxoplasma Gondii.
  • Toxoplasmosis is one of the most widespread infections in animals and humans. The Toxoplasma gondii major surface antigen, called SAG1 or p30, is a highly immunogenic protein which has generated great interest as a diagnostic reagent, as a potential subunit vaccine, and for its role in invasion. In this study, the epitopes of Toxoplasma gondii SAG1 were identified using bioinformatics. Through the analysis of the out¬put of both NetCTL and CTLPred, and B-cell epitope prediction, the position of all the epitopes were found and combined in four sequences. The different tasks including, T-cell and B-cell prediction, Antigenicity determination of the conserved peptides, Homology modeling, Allergenicity and epitope conservancy analysis were done on the conserved peptides. We predict that our proposed epitopes would also trigger an immune response in vitro.

    Immunoinformatic prediction about potential novel vaccine in surface antigen fragment protein of Toxoplasma gondii
  • References

    1. [1] Apweiler R, Bairoch A, Wu C H, Barker W C, Boeckmann B, Ferro S, Gasteiger E, Huang H, Lopez R, Magrane M (2004) UniProt: the universal protein knowledgebase. Nucleic Acids Res. 32: D115-D119. http://dx.doi.org/10.1093/nar/gkh131.

      [2] Berdoy M, Webster J P, Macdonald D (2000) fatal attraction in rats infected with Toxoplasma gondii. Proceedings of the Royal Society of London B: Biological Sciences. 267: 1591-1594. http://dx.doi.org/10.1098/rspb.2000.1182.

      [3] Bhasin M, Raghava G (2004) Prediction of CTL epitopes using QM, SVM and ANN techniques. Vaccine. 22: 3195-3204. http://dx.doi.org/10.1016/j.vaccine.2004.02.005.

      [4] Bui H-H, Sidney J, Li W, Fusseder N, Sette A (2007) Development of an epitope conservancy analysis tool to facilitate the design of epitope-based diagnostics and vaccines. BMC Bioinformatics. 8: 361. http://dx.doi.org/10.1186/1471-2105-8-361.

      [5] Chakraborty S, Chakravorty R, Ahmed M, Rahman A, Waise T Z, Hassan F, Rahman M, Shamsuzzaman S (2010) A computational approach for identification of epitopes in dengue virus envelope protein: a step towards designing a universal dengue vaccine targeting endemic regions. In Silico Biol. 10: 235-246.

      [6] Clustal W (1994) improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice Thompson, Julie D.; Higgins, Desmond G.; Gibson, Toby J. Nucleic Acids Res. 22: 4673-4680. http://dx.doi.org/10.1093/nar/22.22.4673.

      [7] Doytchinova I A, Flower D R (2007) VaxiJen: a server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinformatics. 8: 4. http://dx.doi.org/10.1186/1471-2105-8-4.

      [8] Elmore S A, Jones J L, Conrad P A, Patton S, Lindsay D S, Dubey J (2010) Toxoplasma gondii: epidemiology, feline clinical aspects, and prevention. Trends in parasitology. 26: 190-196. http://dx.doi.org/10.1016/j.pt.2010.01.009.

      [9] Flegr J, Prandota J, SoviÄková M, Israili Z H (2014) Toxoplasmosis—a global threat. Correlation of latent toxoplasmosis with specific disease burden in a set of 88 countries. PLoS One. 9: e90203. http://dx.doi.org/10.1371/journal.pone.0090203.

      [10] Hill D, Dubey J (2002) Toxoplasma gondii: transmission, diagnosis and prevention. Clin. Microbiol. Infect. 8: 634-640. http://dx.doi.org/10.1046/j.1469-0691.2002.00485.x.

      [11] Khan M K, Zaman S, Chakraborty S, Chakravorty R, Alam M M, Bhuiyan T R, Rahman M J, Fernández C, Qadri F, Seraj Z I (2014) in silico predicted mycobacterial epitope elicits in vitro T-cell responses. Mol. Immunol. 61: 16-22. http://dx.doi.org/10.1016/j.molimm.2014.04.009.

      [12] Kolaskar A, Tongaonkar P C (1990) A semi-empirical method for prediction of antigenic determinants on protein antigens. FEBS Lett. 276: 172-174. http://dx.doi.org/10.1016/0014-5793(90)80535-Q.

      [13] Lapelosa M, Gallicchio E, Arnold G F, Arnold E, Levy R M (2009) in silico vaccine design based on molecular simulations of rhinovirus chimeras presenting HIV-1 gp41 epitopes. J. Mol. Biol. 385: 675-691. http://dx.doi.org/10.1016/j.jmb.2008.10.089.

      [14] Larsen M V, Lundegaard C, Lamberth K, Buus S, Lund O, Nielsen M (2007) Large-scale validation of methods for cytotoxic T-lymphocyte epitope prediction. BMC Bioinformatics. 8: 424. http://dx.doi.org/10.1186/1471-2105-8-424.

      [15] Laskowski R A, Rullmann J A C, MacArthur M W, Kaptein R, Thornton J M (1996) AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J. Biomol. NMR. 8: 477-486. http://dx.doi.org/10.1007/BF00228148.

      [16] McKeever T M, Lewis S A, Smith C, Hubbard R (2004) Vaccination and allergic disease: a birth cohort study. Am. J. Public Health. 94: 985-989. http://dx.doi.org/10.2105/ajph.94.6.985.

      [17] Nair D T, Singh K, Siddiqui Z, Nayak B P, Rao K V, Salunke D M (2002) Epitope recognition by diverse antibodies suggests conformational convergence in an antibody response. The Journal of Immunology. 168: 2371-2382. http://dx.doi.org/10.4049/jimmunol.168.5.2371.

      [18] Oany A R, Emran A-A, Jyoti T P (2014) Design of an epitope-based peptide vaccine against spike protein of human coronavirus: an in silico approach. Drug Des. Devel. Ther. 8: 1139. http://dx.doi.org/10.2147/dddt.s67861.

      [19] Saha S, Raghava G (2006) AlgPred: prediction of allergenic proteins and mapping of IgE epitopes. Nucleic Acids Res. 34: W202-W209. http://dx.doi.org/10.1093/nar/gkl343.

      [20] Å ali A, Potterton L, Yuan F, van Vlijmen H, Karplus M (1995) Evaluation of comparative protein modeling by MODELLER. Proteins: Structure, Function, and Bioinformatics. 23: 318-326. http://dx.doi.org/10.1002/prot.340230306.

      [21] Shrestha B, Diamond M S (2004) Role of CD8+ T cells in control of West Nile virus infection. J. Virol. 78: 8312-8321. http://dx.doi.org/10.1128/JVI.78.15.8312-8321.2004.

      [22] Tenter A M, Heckeroth A R, Weiss L M (2000) Toxoplasma gondii: from animals to humans. Int. J. Parasitol. 30: 1217-1258. http://dx.doi.org/10.1016/S0020-7519(00)00124-7.

  • Downloads

  • How to Cite

    Hasheminasab, S. S., Maghsood, H., & Khalili, S. (2016). Immunoinformatic prediction about potential novel vaccine in surface antigen fragment protein of Toxoplasma gondii. International Journal of Health, 4(1), 1-5. https://doi.org/10.14419/ijh.v4i1.5602