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Abstract

The Painlevé equations and their solutions arises in pure, applied mathematics and theoretical physics. In this manuscript we apply the
Optimal Homotopy Asymptotic Method (OHAM) for solving the first Painlevé equation. Our approximation technique is based on the use of
polynomial solutions, which are shown to be accurate when compared to the computed numerical solutions, thus providing a very close
description of the evolution of the system.
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1. Introduction

The special functions play an important role in the study of linear
differential equations, that are also of great importance in mathe-
matical physics. Examples of this functions are the Airy, Bessel,
Parabolic cylindrical, Whittaker, Confluent Hypergeometric and the
Hypergeometric functions. Some of them are solutions of linear or-
dinary differential equations with rational coefficients which receive
the same name as those functions. For example, the Bessel functions
are solutions of the Bessel equation, the simplest second-order linear
differential equation with one irregular singularity, and are used to
describe the motion of planets and artificial satellites via the Kepler
equation.
Painlevé equations play an analogous role for the non-linear differ-
ential equations. These equations were discovered by Painlevé and
Gambier more than 100 years ago [1], and their solutions have the
so-called Painlevé property; i.e., any movable singularity must be a
pole. In fact some specialists consider that during the 21st century,
Painlevé functions will be a new member of the special functions.
The corresponding equations are non-linear second-order ordinary
differential equations, used by physicists and mathematicians since
their discovery to describe a growing variety of systems. Some exam-
ples involve the description of the asymptotic behavior of non-linear
equations [2], statistical mechanics [3], correlation functions of the
XY model [4], bidimensional ising model [5], superconductivity
[6], Bose-Einstein condensation [6], stimulated Raman dispersion
[7], quantum gravity and quantum field theory [8], aleatory ma-
trix models [9], topologic field theory (e.g., the so-called Witten-
Dijkgraaf-Verlinde-Verlinde equations) [10], general relativity [11],
solutions of Einstein axialsymmetric equations [11], negative cur-
vature surfaces [12], plasma physics [6], Hele-Shaw problems [13]
and non-linear optics [14].
During the last years, more and more researchers are interested in

these equations and they have found interesting analytic, geomet-
ric, and algebraic properties. The ideas of Paul Painlevé allowed
to distinguish six families of non-linear second-order differential
equations, the first equation being

PI : u′′ = 6u2 + t, (1)

where u = u(t), and u satisfies the initial conditions (u(0),u(0)′) =
(1,0).
To illustrate a concrete example involving the first Painlevé equation,
consider the case of quantum curves, which attract both mathemati-
cians and physicists since they are expected to encode the informa-
tion of many quantum topological invariants, such as Gromov-Witten
invariants and quantum knot invariants [15, 16]. A quantum curve is
an ordinary differential (or difference) equation containing a formal
parameter h̄ playing the role of the Planck constant; a typical exam-
ple is the Schrödinger equation. The quantum invariants appear in
the coefficients of the WKB (Wentzel-Kramers-Brillouin) solution
of the quantum curve. In this case, the first Painlevé equation is a
quantum curve equation that can be written as

PIq : h̄
d2q
dτ2 = 6q2 + τ. (2)

This equation is obtained from (1) via the rescaling τ = h̄−4/5t,
q = h̄−2/5u. We will assume h̄ a small parameter (as in the Planck’s
constant). In this context, the last equation has the following formal
power series solution:

q(τ, h̄) =
∞

∑
n=0

h̄2nq2n(τ), (3)

The solution contains only even-order terms of h̄ since PIq is invariant
under h̄→−h̄. The leading term q0 = q0(τ) satisfies

6q2
0 + τ = 0, hence : q0(τ) =

√
−τ

6
(4)
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and the subleading terms are recursively determined by

q2(k+1)(τ) =
1

12q0(τ)

(
d2q2k

dτ2 −6 ∑
k1+k2=k+1

q2k1(τ)q2k2(τ)

)
, (5)

for 1≤ k and ki > 0.
Although several numerical methods [17, 18, 19] have been imple-
mented to solve the first Painlevé equation (1), in this paper we
explore analytical solutions using Optimal Homotopy Asymptotic
Method (OHAM). Our approximation technique leads in a natural
way to a polynomial approach. Polynomial approximation formulas
are applicable for approximation over finite intervals, or finite con-
tours. OHAM is effective and accurate, showing great potential for
solving strongly non-linear problems. The basic idea of the Optimal
Homotopy Asymptotic Method was initially introduced by Marinca
and Herisanu [20]. OHAM reduces the size of the computational
domain and it has been successfully applied to a number of non-
linear differential equations in science and engineering, e.g., to study
steady flow of a fourth-grade fluid through a porous medium [20],
oscillators with discontinuities and fractional-power restoring force
[21], periodic solutions for the motion of a particle on a rotating
parabola [22], thin film flow of a fourth-grade fluid [23], nonlinear
heat transfer equations [24], and nonlinear problems in elasticity [25].
In particular, using OHAM Islam et al. [26] investigated Couette
and Poiseuille flows of a third-grade fluid with heat transfer analysis,
Idrees et al. [27] analyzed the Korteweg–de Vries (KDV) equation,
Mohsen et al. [28] studied viscous flow in a semi-porous channel
with uniform magnetic field, and Ghoreishi et al. [29] provided a
comparative study for nth-order integral-differential equations.
In the next section we present the mathematical formalities that will
be used in the rest of the paper.

2. Basic ideas of OHAM

Consider the following general differential equation

L[u(t)]+g(t)+N[u(t)] = 0, (6)

that satisfies de initial/boundary conditions

B
[

u(t),
du(t)

dt

]
= B

[
u(t),u′(t)

]
= 0, (7)

where t denotes the independent variable, u(t) is a function to solve,
g(t) is a given function, L, N, and B are linear, nonlinear and bound-
ary operators, respectively.
Applying OHAM to the given problem, a general deformation (Ho-
motopy) equation is presented as:

(1− ε)(L [H(t,ε)]+g(t)) = h(ε) [L [H(t,ε)]+g(t)+N [H(t,ε)]] ,

(8)

and

B
[

H(t,ε),
∂H(t,ε)

∂ t

]
= 0, (9)

where ε ∈ [0,1] is an embedding parameter, h(ε) is a nonzero aux-
iliary function for ε 6= 0 and h(0) = 0, H(t,ε) is a unknown func-
tion. Clearly, when ε = 0 and ε = 1 it holds H(t,0) = u0(t) and
H(t,1) = u(t), respectively.
Thus, as ε changes from 0 to 1, the solution H(t,ε) changes from
u0(t) to the solution u(t), where u0(t) is obtained from equation (8)
for ε = 0:

L [u0(t)]+g(t) = 0, B
[
u0(t),u′0(t)

]
= 0. (10)

Now, we propose the auxiliary function h(ε) to be of the form:

h(ε) = εK1 + ε
2K2 + ε

3K3 + · · ·+ ε
mKm =

m

∑
i=1

ε
iKi, (11)

where Ki are constants. For actual applications Ki, are finite, say,
i = 1,2,3, ...,m.
Expanding H(t,ε) in Taylor’s series about ε , we obtain:

H(t,ε) = u0(t)+
∞

∑
i=1

un(t,Ki)ε
n. (12)

Substituting (12) into (8), and equating the coefficient of like powers
of ε , we obtain that zeroth-order problem is given by (10), while the
first- and second-order problems are given by

L [u1(t)] = K1N0 [u0(t)] , B
[
u1(t),u′1(t)

]
= 0,

L [u2(t)]− (1+K1)L [u1(t)] = K2N0 [u0(t)]+K1N1 [u0(t)] ,

B
[
u2(t),u′2(t)

]
= 0. (13)

It is then possible to write

L [un(t)]−L [un−1(t)] = KnN0 [u0(t)]

+
n−1

∑
i=1

Ki [L [un−i(t)]+Nn−i [u0(t),u1(t), ...,un−1(t)]] , (14)

B
[
un(t),u′n(t)

]
= 0. (15)

In the last equation Nm [u0(t),u1(t), ...,un−1(t)] is the coefficient of
εm in the expansion of N [H(t,ε)]:

N [H(t,ε,Ki)] = N0 [u0(t)]+
∞

∑
m=1

Nm[u0(t),u1(t), ...,um(t)]εm. (16)

Here, convergence of the series (12) depends upon the constants Ki,
i = 1,2,3, ....
When ε = 1, the equation (12) can be written as

ū(t,Km) = u0(t)+
n

∑
i=1

ūi(t,Km), (17)

and the sum converges, because that in practical application n es
finite for effect to approximate a solution. Substituting (17) into (8),
we obtain the residual:

R(t,Km) = L[ū(t,Km)]+g(t)+N[ū(t,Km)]. (18)

If R = 0, then ū yields the exact solution. However, this does not
happen in general, especially when dealing with non-linear problems.
In order to determine Ki, there are various methods like Ritz Method,
Galerin’s Method, and Collocation Method, or the Method of Least
Squares,

J(t,Km) =
∫ b

a
R2(t,Km)dt, (19)

where the residual R = L[ū]+g(t)+N[ū], and

∂J(t,Km)

∂Ki
= 0, (20)

with a and b properly chosen numbers to locate the desired Ki. With
these constants known, the approximate solution (of order m) is
well-defined.

3. Approximate solution of the first Painlevé
equation by OHAM

Here we develop a solution for equation (1) using OHAM. First we
note that in this case we can make the identification

L[A] :=
d2

dt2 A, g(t) := 0, N[A] :=−6A2− t, (21)

The zeroth-order of approximation is given by

u′′0(t) = 0, u0(0) = 1, u′0(0) = 1, (22)
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with solution u0(t) = 1. For the first-order problem, we obtain

u′′1(t)+K1(6+ x) = 0, u1(0) = 0, u′1(0) = 0, (23)

with solution u1(t) = a1x2 +a2x3, and a1 :=−3K1, a2 :=−K1/6.
For the second-order of approximation, we can see that u2(t) is a
higher-order polynomial function. Actually, u2(t) is of the form
u2(t) = Q2(t) = ∑

8
n=2 bntn, with the coefficients bn expressed in

terms of a1, a2, K1 and K2, provided by (13) and (13).
Higher orders of approximation are given by functions with a higher
order of powers in t. For example, polynomials of third- (Q3(t))
and fourth-order (Q4(t)) have powers of 18 and 36 in the variable t,
respectively.
There are many ways to choose the polynomials Qn(t), n = 1,2,3.
We illustrate some simple cases that give very accurate results when
compared to the numerical solutions:

Case 1: u(1)(t) = 1+
15

∑
n=1

anx2n, (24)

Case 2: u(2)(t) = 1+
11

∑
n=1

anx3n−1, (25)

Case 3: u(3)(t) = 1+
8

∑
n=1

anx4n−2, (26)

Case 4: u(4)(t) = 1+
6

∑
n=1

anx5n−3, (27)

where an are unknown parameters (n = 1,2, ...15).

4. Numerical Results

In order to show the validity and accuracy of the OHAM, we compare
previously obtained approximate solutions (24)-(27) with numerical
integrations obtained by means of a forth-order Runge-Kutta method,
using Maple 18 software. Using the least-square method for deter-
mination of the parameters an (more precisely: convergence-control
parameters) we obtain

u(1)(t) = 1+2.9150x2 +2.4133x4 +13.9042x6

−37.2086x8 +37.4900x10 +85.8166x12

−174.9123x14 +41.6388x16 +56.7217x18

+106.7576x20−139.5246x22−54.5454x24

+115.0371x26−36.9073x28 +1.7745x30, (28)

u(2)(t) = 1+3.2003x2 +6.9920x5 +0.7213x8

−2.5434x11 +38.4064x14−54.1081x17

+2.7455x20 +92.5541x23−110.2190x26

+52.1268x29−7.5301x32, (29)

u(3)(t) = 1+3.4747x2 +11.8083x6−14.7294x10

+53.9107x14−84.1765x18 +90.8881x22

−52.5900x26 +14.4486x30, (30)

u(4)(t) = 1+3.8303x2 +13.3965x7−9.1998x12

+23.6756x17−16.5473x22 +7.35461x27, (31)

In Figure 1 we present a comparison between the approximate solu-
tions given by equations (28)-(31) and the corresponding numerical
result.
Some values of the approximate solutions obtained, i.e., equations
(28)-(31), and the numerical results for different values of x, are
given in Table 1.
In Table 2, we compare the relative error (%) EOHAM =
|uapprox(t)−uNum|

uNum
×100, for 22 points in the range 0≤ x≤ 1.

Figure 1: Comparison between the results obtained by means OHAM, Eq.
(28) and numerical results: numerical results in solidbox mark and approxi-
mate solution in continuun line.

Figure 2: Comparison between the results obtained by means OHAM, Eq.
(29) and numerical results: numerical results in solidbox mark and approxi-
mate solution in continuun line.

Figure 3: Comparison between the results obtained by means OHAM, Eq.
(30) and numerical results: numerical results in solidbox mark and approxi-
mate solution in continuun line.

5. Conclusions

In this paper we introduced the OHAM approach to propose an-
alytic approximate solutions to the First Painlevé equation. The
procedure is valid even if the non-linear equation does not contain



International Journal of Applied Mathematical Research 37

Figure 4: Comparison between the results obtained by means OHAM, Eq.
(31) and numerical results: numerical results in solidbox mark and approxi-
mate solution in continuun line.

Table 1: Approximate solutions obtained OHAM - Eq. (28)-(31) and numer-
ical solutions for different values of t

t uNum Eq. (28) Eq. (29) Eq. (30) Eq. (31)
0 1 1 1 1 1
0.01 1.0003 1.0002 1.0003 1.0003 1.0003
0.05 1.0075 1.0073 1.0080 1.0086 1.0095
0.1 1.0304 1.0294 1.0320 1.0347 1.0383
0.15 1.0696 1.0669 1.0725 1.0783 1.0862
0.2 1.1263 1.1212 1.1302 1.1397 1.1533
0.25 1.2027 1.1944 1.2068 1.2200 1.2402
0.3 1.3014 1.2898 1.3050 1.3212 1.3476
0.35 1.4264 1.4117 1.4289 1.4469 1.4778
0.4 1.5830 1.5656 1.5841 1.6029 1.6346
0.45 1.7784 1.7585 1.7783 1.7973 1.8251
0.5 2.0227 1.9993 2.0221 2.0418 2.0601
0.55 2.3301 2.3006 2.3294 2.3515 2.3564
0.6 2.7212 2.6818 2.7203 2.7475 2.7377
0.65 3.2261 3.1728 3.2245 3.2600 3.2371
0.7 3.8908 3.8192 3.8879 3.9353 3.9019
0.75 4.7882 4.6914 4.7838 4.8477 4.8029
0.8 6.0383 5.9025 6.0322 6.1220 6.0575
0.85 7.8514 7.6498 7.8424 7.9755 7.8757
0.9 10.6226 10.3056 10.6079 10.8178 10.6584
0.95 15.1665 14.6291 15.1416 15.5000 15.2278
1 23.3936 22.3707 23.3459 24.0347 23.5100

small (or large) parameters. The proposed construction of homotopy
is different from other approaches in the presence of parameters
an, which ensure a very rapid convergence of the solutions. In
the range 0 ≤ x ≤ 0.9, each approximate solution is very close to
the value of the numerical solution, with errors beginning to grow
(smoothly) in the range 0.9 ≤ x ≤ 1. The average errors do not
exceed 1.4%. Moreover, the derivatives for each approximate so-
lution are quite close to the values of the numerical derivatives,
i.e., u′(1) = 211.6947789, u′(2) = 225.6800639, u(3) = 235.7368580,
u′(4) = 228.0583361, compared with u′Num = 226.373168734935, re-
spectively. In this case the error in x = 1 does not exceed 4.2%.
Finally we can mentioned that at least in the case of the first of the
equations of Painlevé this method is a convenient way to control
the convergence of the approximation in series of the solution. This
method has been tested in various examples of linear and nonlinear
and system of initial value problems of DDEs and was seen to yield
satisfactory results. The results which are obtained revealed that the
proposed method is explicit, effective, and easy to use.

Table 2: Comparison between the relative errors (%) obtained by OHAM -
Eq. (28)-(31) for different values of t.

t Err(u(1)) Err(u(2)) Err(u(3)) Err(u(4))
0 0 0 0 0
0.01 0.0008 0.0019 0.0047 0.0082
0.05 0.0234 0.0459 0.1138 0.2021
0.1 0.1033 0.1555 0.4162 0.7602
0.15 0.2490 0.2725 0.8127 1.5502
0.2 0.4529 0.3450 1.1878 2.3988
0.25 0.6832 0.3455 1.4415 3.1187
0.3 0.8907 0.2776 1.5214 3.5502
0.35 1.0322 0.1714 1.4377 3.5986
0.4 1.0970 0.0669 1.2552 3.2597
0.45 1.1187 0.0039 1.0645 2.6229
0.5 1.1588 0.0323 0.9415 1.8500
0.55 1.2674 0.0336 0.9163 1.1275
0.6 1.4469 0.0341 0.9683 0.6055
0.65 1.6530 0.0497 1.0526 0.3416
0.7 1.8415 0.0744 1.1413 0.2829
0.75 2.0206 0.0923 1.2436 0.3076
0.8 2.2485 0.1015 1.3853 0.3173
0.85 2.5684 0.1158 1.5796 0.3086
0.9 2.9839 0.1382 1.8373 0.3367
0.95 3.5434 0.1640 2.1988 0.4041
1 4.3725 0.2042 2.7403 0.4974
Average 1.3980 0.1239 1.1482 1.2477
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[1] Painlevé P., Sur les équations différentielles du second ordre et d’ordre
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dati. Painlevé singularity structure analysis of three component Gross-
Pitaevskii type equations. J. Math. Phys., 50 (2009), 113520.

[7] E.A. Moskovchenko and V.P. Kotlyarov. Periodic boundary data for an
integrable model of stimulated Raman scattering: long-time asymptotic
behavior. J. Phys. A: Math. Gen., 43 (2010), 5.

[8] A.S. Fokas, A.R. Its, and A.V. Kitaev. Discrete Painlevé equations
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[10] B. Dubrovin. Painlevé trascendents and two-dimensional topological
field theory. CRM Math. Phys., (1999) pages 287-412.

[11] Gariel, G. Marcilhacy, and N.O. Santos. Stationary axisymmetric solu-
tions involving a third order equation irreducible to Painlevé transcen-
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