Exact solutions of the ZK-MEWequation and the Davey-Stewartson equation
-
2014-04-04 https://doi.org/10.14419/ijamr.v3i2.2116 -
Abstract
In this paper we introduce a new version of the trial equation method for solving non-integrable partial differential equations in mathematical physics. Some exact solutions including soliton solutions, rational and elliptic function solutions to the generalized (2+1)-dimensional ZK-MEW equation and the generalized Davey-Stewartson equation with the complex coefficients are obtained by this method.
Keywords: Extended trial equation method, generalized (2+1)-dimensional ZK-MEW equation, Davey-Stewartson equation, soliton solution, elliptic solutions.
-
References
- M. J. Ablowitz, P.A. Clarkson Solitons, Nonlinear Evolution Equations and Inverse Scattering Transform, Cambridge: Cambridge University press, 1991.
- A. M. Wazwaz, The tanh method for travelling wave solutions of nonlinear equations, Applied Mathematics and Computation 154 (2004) 713-723.
- P. Rosenau, J. M. Hyman, Compactons: solitons with finite wavelengths, Physical Review Letters 70 (1993) 564-567.
- A. M. Wazwaz, An analytic study of compactons structures in a class of nonlinear dispersive equations, Mathematics and Computers in Simulation 63 (2003) 35-44.
- R. Hirota, Exact solutions of the Korteweg-de-Vries equation for multiple collisions of solitons, Phys. Lett. A 27 (1971) 1192-1194.
- W. Malfliet, W. Hereman, The tanh method: exact solutions of nonlinear evolution and wave equations, Phys. Scr. 54 (1996) 563-568.
- M. A. Abdou, The extended tanh method and its applications for solving nonlinear physical models, Appl. Math. Comput. 190 (2007) 988-996.
- H.X. Wu, J. H. He, Exp-function method and its application to nonlinear equations, Chaos Solitons Fractals 30 (2006) 700-708.
- M. Wang, X. Li, J. Zhang, The $(frac{G'}{G})$-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics, Phys. Lett. A 372 (2008) 417-423.
- G. Ebadi, A. Biswas, The $(frac{G'}{G})$ method and topological soliton solution of the K(m,n) equation, Commun. Nonlinear Sci. Numer. Simulat. 16 (2011) 2377-2382.
- E. M. E. Zayed, K. A. Gepreel, The $(G'/G)$-expansion method for finding traveling wave solutions of nonlinear partial differential equations in mathematical physics, Journal of Mathematical Physics 50 (2009) 013502-12.
- E. M. E. Zayed, M. A. S. EL-Malky, The Extended $(G'/G)$-expansion method and its applications for solving the (3+1)-dimensional nonlinear evolution equations in mathematical physcis, Global Journal of Science Frontier Research 11 (2011) 13 pages.
- M. Ekici, D. Duran, A. Sonmezoglu, Constructing of exact solutions to the (2+1)-dimensional breaking soliton equations by the multiple $(frac{G'}{G})$-expansion method, J. Adv. Math. Stud. 7 (2014) 27-44.
- M. Wang, Solitary wave solutions for variant Boussinesq equations, Phys. Lett. A 199 (1995) 169-172.
- H. T. Chen, H.Q. Zhang, New double periodic and multiple soliton solutions of the generalized (2 + 1)-dimensional Boussinesq equation, Chaos Soliton. Fract. 20 (2004) 765-769.
- D. Zhang, Doubly periodic solutions of the modified Kawahara equation, Chaos Soliton. Fract. 25 (2005) 1155-1160.
- Q. Liu, J. M. Zhu, Exact Jacobian elliptic function solutions and hyperbolic function solutions for Sawada-Kotere equation with variable coefficient, Phys. Lett. A 352 (2006) 233-238.
- X. Zhao, H. Zhi, H. Zhang, Improved Jacobi-function method with symbolic computation to construct new double-periodic solutions for the generalized Ito system, Chaos Soliton. Fract. 28 (2006) 112-126.
- A. Ebaid, E. H. Aly, Exact solutions for the transformed reduced Ostrovsky equation via the F-expansion method in terms of Weierstrass-elliptic and Jacobian-elliptic functions, Wave Motion 49 (2012) 296-308.
- A. Filiz, M. Ekici, A. Sonmezoglu, F-expansion method and new exact solutions of the Schr"{o}dinger-KdV equation, The Scientific World Journal, 2014 (2014). Article ID 534063, 14 pages.
- C. S. Liu, Trial equation method and its applications to nonlinear evolution equations, Acta. Phys. Sin. 54 (2005) 2505-2509.
- C. S. Liu, A new trial equation method and its applications, Commun. Theor. Phys. 45 (2006) 395-397.
- C. S. Liu, Trial equation method for nonlinear evolution equations with rank inhomogeneous: mathematical discussions and applications, Commun. Theor. Phys. 45 (2006) 219-223.
- C. S. Liu, Using trial equation method to solve the exact solutions for two kinds of KdV equations with variable coefficients, Acta. Phys. Sin. 54 (2005) 4506-4510.
- C. S. Liu, Applications of complete discrimination system for polynomial for classifications of traveling wave solutions to nonlinear differential equations, Comput. Phys. Commun. 181 (2010) 317-324.
- Y. Gurefe, A. Sonmezoglu, E Misirli, Application of the trial equation method for solving some nonlinear evolution equations arising in mathematical physics, Pramana-J. Phys. 77 (2011) 1023-1029.
- Y. Pandir, Y. Gurefe, U. Kadak, E. Misirli, Classifications of exact solutions for some nonlinear partial differential equations with generalized evolution, Abstr. Appl. Anal. 2012 (2012). Art. ID 478531, 16 pages.
- Y. Gurefe, E. Misirli, A. Sonmezoglu, M. Ekici, Extended trial equation method to generalized nonlinear partial differential equations, Appl. Math. Comput. 219 (2013) 5253-5260.
- Y. Gurefe, E. Misirli, Y. Pandir, A. Sonmezoglu, M. Ekici, New Exact Solutions of the Davey-Stewartson Equation with Power-Law Nonlinearity, Bull. Malays. Math. Sci. Soc. (2013) in press.
- M. Ekici, D. Duran, A. Sonmezoglu, Soliton Solutions of the Klein-Gordon-Zakharov Equation with Power Law Nonlinearity, ISRN Computational Mathematics 2013 (2013). Article ID 716279, 7 pages.
- A. Filiz, A. Sonmezoglu, M. Ekici, D. Duran, A New Approach for Soliton Solutions of RLW Equation and (1+2)-Dimensional Nonlinear Schr"{o}dinger's Equation, Mathematical Reports (2014) in press.
- N. J. Zabusky, M.D. Kruskal, Interaction of solitons in a collisionless plasma and the recurrence of initial states, Physical Review Letters 15 (1965) 240-243.
- M. Wadati, The modified Kortweg-de Vries equation, Journal of Physical Society of Japan 34 (1973) 1289-1296.
- A. M. Wazwaz, Exact solutions for the ZK-MEW equation by using the tanh and sine-cosine methods, Int. J. Comput. Math. 82 (2005) 699-708.
- E. M. E. Zayed, A. H. Arnous, Exact solutions of the nonlinear ZK-MEW and the Potential YTSF equations using the modified simple equation method, AIP Conference Proceedings of ICNAAM 2012 1479 (2012) 2044-2048. American Institute of Physics, USA.
- G. Ebadi, A. Biswas, The $(frac{G'}{G})$ method and 1-soliton solution of the Davey-Stewartson equation, Math. Comput. Model. 53 (2011) 694-698.
- A. Bekir, A. C. Cevikel, New solitons and periodic solutions for nonlinear physical models in mathematical physics, Nonlinear Anal. Real World Appl. 11 (2010) 3275-3285.
- X. Zhao, Self-similar solutions to a generalized Davey-Stewartson system, Math. Comput. Model. 50 (2009) 1394-1399.
-
Downloads
Additional Files
-
How to Cite
Zayed, E., Filiz, A., Ekici, M., Sonmezoglu, A., & Duran, D. (2014). Exact solutions of the ZK-MEWequation and the Davey-Stewartson equation. International Journal of Applied Mathematical Research, 3(2), 122-132. https://doi.org/10.14419/ijamr.v3i2.2116Received date: 2014-03-04
Accepted date: 2014-03-29
Published date: 2014-04-04