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Abstract 
 

Vitamins, especially the water-soluble complex of vitamins B, are highlighted in the daily clinical practice. Numerous studies emphasize 

the need for supplementation, mainly in groups with deficiency of these vitamins, such as the elderly, pregnant women, children and 

patients with diseases associates with cognitive disorder. Thiamine (B1), a vitamin of the diet, is an important cofactor for the three key 

enzymes involved in the citric acid cycle and the pentose phosphate cycle. Pyridoxine (B6) and cobalamin (B12) act in the CNS as a 

cofactor in the metabolism reactions of homocysteine. Deficiency of some neurotransmitter precursors can also cause symptoms of atten-

tion deficit hyperactivity disorder in children, especially amino acid and vitamin B deficiency. Inhibitory and excitatory neurotransmit-

ters regulate diverse behavioral processes, including sleep, learning, memory and sensation of pain. They are also implicated in many 

pathological processes, such as epilepsy and neurotoxicity. Studies suggest that the excitatory amino acids may play a role in learning 

and memory. The binding of glutamate to its receptor triggers molecular and cellular events associated with numerous physiological and 

pathophysiological pathways, including the development of an increased sensation of pain (hyperalgesia), brain neurotoxicity or synaptic 

alterations involved in certain types of memory formation. Between the two major classes of neuroactive amino acids, γ-aminobutyric 

acid (GABA) is the major inhibitory amino acid. It is known that GABA plays a fundamental role in encoding information and behavior-

al control, in the regulation of motor function and in motor learning. The inter-relationships between diet, the brain and behavior are 

complex. However, micronutrients are known to have a direct influence on cognitive function through their involvement in the energy 

metabolism of neurons and glia cells, the synthesis of neurotransmitters, receptor binding and the maintenance of membrane ion pumps. 
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1. Introduction 

The inter-relationships between diet, the brain and behavior are 

complex. However, micronutrients are known to have a direct 

influence on cognitive function through their involvement in the 

energy metabolism of neurons and glia cells, the synthesis of neu-

rotransmitters, receptor binding and the maintenance of membrane 

ion pumps. Vitamins have potential benefits for cerebral function, 

since their deficiencies are characterized by dramatic neurological 

manifestations. In the first part of this article, the current 

knowledge of the physiological roles of some vitamins of the B 

complex most closely associated with cognitive performance will 

be reviewed, with particular reference to the central nervous sys-

tem (CNS). In the second part of this article, the physiological 

roles of two main neurotransmitters of the CNS are discussed as 

well. 

2. Vitamins B 

Vitamins, especially the water-soluble complex of vitamins B, are 

highlighted in the daily clinical practice. Numerous studies em-

phasize the need for supplementation, mainly in groups with defi-

ciency of these vitamins, such as the elderly, pregnant women, 

children and patients with diseases associates with cognitive dis-

order [1], [2].  

Clinical evidence shows that all B vitamins have a fundamental 

role in neurotransmitters, lipids and proteins metabolism, and act 

differently in various enzyme systems, participating as co-

enzymes in the activation of numerous metabolic processes [3], 

[4]. Demonstrations found in scientific papers related to B vita-

mins deficiencies are, mostly, neurological and cardiovascular [5].  

Being water soluble, these vitamins are not considerably stored in 

the body, so that a daily supply through diet is critical to prevent 

deficiencies. The main sources of these vitamins are red meat [6]. 

2.1. Thiamine 

Thiamine (B1), a vitamin of the diet, is an important cofactor for 

the three key enzymes involved in the citric acid cycle and the 

pentose phosphate cycle. Thiamine is vital to the maintenance of 

cellular oxidative metabolism and synthesis of nucleotides in the 

developing brain [7], [8] as well as in adults [9], [10]. 

The deficiency in cellular metabolism and oxidative stress in Alz-

heimer's disease is very similar to that induced by thiamine defi-

ciency. Clinical and experimental evidences have demonstrated 

that patients with Alzheimer's disease also show a downregulation 

(low hippocampal neurogenesis) [11], besides dependent oxidative 

metabolism and reduced thiamine [12], [13]. Other experiments 

show that mice with deficiency of thiamine produce a pathological 
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change Alzheimer's-like, with a selective neuronal loss [14]. 

Therefore, hippocampal neurogenesis is vulnerable to thiamine 

deficiency. 

The hippocampus has been recognized as the structure related to 

learning and memory; it plays a key role in neural plasticity in-

duced in physiological conditions as well as pathological condi-

tions. The correlation between hippocampal neurogenesis and 

cognitive function naturally awakened enormous research interest 

[15], [16], [17]. Experimental evidence has shown that the new-

born neurons in the hippocampal dentate gyrus have the potential 

to become synaptically integrated [18], [19], [20], [21] and achiev-

ing neuronal characteristics morphological, biochemical and elec-

trophysiological normal [22], [23], [24]. 

Furthermore, thiamine plays an important role in the synthesis and 

decomposition of acetylcholine (Ach). Ach is synthesized in neu-

rons from choline and acetyl coenzyme A (CoA) by the enzyme 

choline acetyltransferase. Acetyl-CoA is derived primarily from 

oxidative decarboxylation reaction of pyruvic acid. Thiamine py-

rophosphate (TPP), an active type of thiamine, is a coenzyme key 

to this reaction of oxidative decarboxylation. The thiamine defi-

ciency leads to inhibition of ACh synthesis due to the reduction of 

acetyl-CoA. Moreover, such a deficiency weakens the inhibitory 

effect of thiamine on the activity of acetylcholinesterase and ac-

celerates the inactivation of Ach. Therefore, inhibition of ACh 

synthesis may contribute to cognitive dysfunction induced by 

thiamine deficiency [25]. All this functional mechanism is sum-

marized in Figure 1. 

Zhao et al. (2008) [25] explored the influence of thiamine defi-

ciency (DT) in the pathological pre-injury stage in the early neu-

rogenesis and the correlation between affected neurogenesis and 

cognitive dysfunction. The mouse experimental model DT was fed 

a diet with thiamine depletion. The functions of learning and 

memory of mice with DT were tested with the Y-maze scale. Neu-

rogenesis was studied with the immunohistochemical markers 

BrdU, PCNA, Dcx and NeuN. The results showed a significant 

decrease in learning ability and neurogenesis in the hippocampus 

simultaneously from the ninth day of treatment (D9) when the 

models showed loss of cholinergic neurons and reduction of hip-

pocampal cells. Administration of thiamine in the diet reversed 

learning ability, as well as the decrease in hippocampal neurogen-

esis induced by DT in the early pathological pre-injury phase [25].  

In a clinical study by Benton et al., (1995), involving one hundred 

and twenty young adult women with ingestion of 50 mg thiamine, 

the treated group had a significant improvement in mood (after 2 

months use) and in time reaction compared to the control group 

(placebo) [26]. Several authors have demonstrated effects and 

various concentrations of thiamine use, as shown in Table 1. 

 

 

 

 
Fig. 1: Mechanism of Action of Thiamine. 

 
Table 1: Clinical Studies of Thiamine Deficiency and Supplementation. 

Author n Dose (mg) Time Effect 

Brožek et al. (1957) [27] 
10 Privation 15-27 days Anorexia, muscle weakness, irritability, depression. 
 

 
5 9-21 days 

Improvement of symptoms observed in the deprivation 

of this vitamin. 

Benton et al., (1995) [26] 129 14 4 months Improved mood in women. 
Smidt et al., (1991) [28] 80 10 6 weeks Increased sense of well-being and decrease fatigue. 

Heseker et al., (1990) 

[29] 

1081 Privation 

2 months 

Introversion, inactivity, fatigue, decreased confidence 

and mood. 

 

 
3 Increased sociability, sensitivity and mood. 

Harrell (1946) [30] 

120 1 (boys) 

1 year 

Adequate amount of thiamine = normal children. 
 

 
0,9 (girls) 

 

 

 2 both sexes 
Taller children, with better vision, faster reaction times 
and better results on memory and intelligence tests. 

 

2.2. Pyridoxine and cobalamin 

Pyridoxine (B6) and cobalamin (B12) act in the CNS as a cofactor 

in the metabolism reactions of homocysteine [31]. Homocysteine 

(HCl) is a sulfhydryl amino acid formed from the demethylation 

of methionine and is metabolized by two pathways: the remethyla-

tion (dependent on vitamin B12 and folic acid) and the transsul-

furation (dependent on vitamin B6) [32]. The mechanisms of ac-

tion cited below are summarized schematically in Figure 2. 

Cobalamin (B12) passes through the blood-brain barrier bound to 

transcobalamin II protein (TC2) forming the cobalamin-TC2 com-

plex, which crosses the barrier by endocytosis, using the high 

affinity cell surface receptor [33]. Pyridoxine (B6) is absorbed 

from the gastrointestinal tract and converted in the liver into pyri-

doxal 5'phosphate, the enzyme non-specific alkaline phosphatase. 

In blood, the same enzyme removes phosphate, producing pyri-

doxal, which is then transported by the blood-brain barrier [34]. 

B6 is a cofactor in the synthesis of cysteine from Hci. Cysteine is 

a glutathione precursor, which is an antioxidant substance, and 

acts by inhibiting Hci oxidant action [2]. B6 and B12 also act as 

cofactors in the S-adenosyl-methionine synthesis (SAM), which is 

an enzymatic cofactor of glutathione production [35]. SAM is also 

a precursor in the synthesis of melatonina, produced in the pineal 

gland. Melatonin has an antioxidant role, as glutathione [36]. In 

fact, studies show that SAM synthesis can enhance cognitive per-

formance [37]. It also adds the fact that B6 and SAM are essential 

cofactors in the pathway of synthesis of epinephrine, which is 

involved in learning processes and memory consolidation [38], 

[39]. 

Diets deficient in B6 and B12 induce in mice high levels of HCY 

in plasma and high levels of amyloid-beta, neurotoxicity indica-

tive for leading to neuronal apoptosis caused by oxidative stress 

[40]. Added to this, in vitro experiments show that supplementa-
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tion with B6 and B12 can treat diseases related with dementia by 

reducing the amyloid-beta accumulation in the cortex and hippo-

campus [41]. It was concluded that high levels of homocysteine 

(HCY) in plasma are directly related to deficiency of vitamins B6 

and B12 [2]. 

Other clinical studies evaluated the rate of brain atrophy in Alz-

heimer's patients who have low levels of HCl, after treated with 

B6 (pyridoxine) and B12 (cobalamin). The results showed that the 

rate of atrophy and cognitive impairment declined in 85 patients 

treated, after 2 years [42]. In another study of these same authors 

carried out in 2012 included 133 patients with Alzheimer's disease 

who were treated with B6 and B12. In this evaluation, cognitive 

decline caused by the disease was retarded in the end of 2 years of 

treatment [43]. In another study, 211 young, adult and old women 

were tested with B6 and B12 supplementation to assess the asso-

ciation between cognition and vitamins B. The processing speed 

and working memory were used as parameter. The result was 

positive, there was improvement in memory and learning of young 

women, after 35 days of treatment [44]. Furthermore, a clinical 

study of association between the high concentration of Hci in 

plasma and cognitive performance evaluated 87498 individuals 

presenting a associatin of 7-8% of Hci levels with cognition [45]. 

Deficiency of some neurotransmitter precursors can also cause 

symptoms of attention deficit hyperactivity disorder in children, 

especially amino acid and vitamin B deficiency [46]. Therefore, 

supplementation with vitamins B6 and B12 provide improvement 

in cognition and learning, as they assist in the processes of synthe-

sis of those neurotransmitters that are directly involved in cogni-

tive processes of brain [47]. Table 2 outlines some clinical studies 

with different doses of supplementation of vitamins B6 and B12. 

 

 

 

 
Fig. 2: Mechanism of Action of B6 and B12. 

 
Table 2: Clinical Studies of B6 and B12 Vitamins. 

Author B6 Vitamin B12 Vitamin Time Patients Results 

Smith et al., 2010 

[42] 
20mg 0,5mg 24 months 85 

Brain atrophy rate and cognitive impair-

ment decreased 

Jager et al., 2012 
[43] 

20mg 0,5mg 24 months 133 
It was slowed cognitive decline caused by 
the disease 

Bryan et al., 2002 

[44] 
75mg 15µg 35 days 211 

Supplementation with B vitamins shows 

positive results on memory and learning 

 

3. Neurotransmitters aminoacids 

The central nervous system (CNS) shows high concentrations of 

certain aminoacids which bind to postsynaptic receptors, acting 

thus as inhibitory or excitatory neurotransmitters. 

Inhibitory and excitatory neurotransmitters regulate diverse behav-

ioral processes, including sleep, learning, memory and sensation 

of pain. They are also implicated in many pathological processes, 

such as epilepsy and neurotoxicity. The interactions between ion 

channels, receptors that regulate these channels and aminoacid 

neurotransmitters in the CNS are the molecular basis of these pro-

cesses. This section will discuss the operation of the two major 

systems of aminoacid neurotransmission in the CNS, which in-

volve the gamma-aminobutyric acid (GABA) and glutamate. 

3.1. Glutamate 

Excitatory aminoacids have been proposed as the main neuro-

transmitter of the central nervous system. Studies suggest that the 

excitatory aminoacids may play a role in learning and memory 

[48]. The binding of glutamate to its receptor triggers molecular 

and cellular events associated with numerous physiological and 

pathophysiological pathways, including the development of an 

increased sensation of pain (hyperalgesia), brain neurotoxicity or 

synaptic alterations involved in certain types of memory formation 

[49]. 

The glutamate synthesis proceeds via two distinct pathways. In 

one of these pathways, alpha-ketoglutarate formed in the citric 

acid cycle is transaminated to glutamate in the nerve endings in 

the CNS. Alternatively, the glutamine produced and secreted by 

the glial cells is transported in the nerve endings and converted 

into glutamate by glutaminase [49]. There are two isoforms, D-

glutamate and L-glutamate. 

L-Glutamate is the most abundant free amino acid in the brain and 

the predominant excitatory neurotransmitter in the CNS of verte-

brates. Among its many functions, the L-glutamate plays a critical 

role in the synaptic plasticity and its maintenance [50]; also con-

tributes to learning and memory through changes in the use of 

synaptic efficacy, such as maintenance of long-term potential [51]. 

In nerve terminals, L-glutamate is stored in vesicles and released 

by a mechanism dependent on calcium. Once in the synaptic cleft, 

L-glutamate binds to and activates postsynaptic glutamate recep-

tors. Although many different subtypes of glutamate receptors 

have been identified [52] ionotropic receptors have been the most 

extensively studied. They are subdivided into three classes: the 

AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic 

acid), kainate and NMDA (N-methyl D-aspartate) receptors, the 

NMDA being the most important. The functions of the NMDA 

receptors are as sodium and calcium transporter, having five sepa-

rate binding sites, each of which is affected by different substrates 

susceptible to alter the receptor affinity. L-glutamate action is 

ended by removal of this substance from the synaptic cleft by 
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neuronal and glial presynaptic uptake systems of high affinity, 

several of which have previously been cloned [53], [54], and [55]. 

The voltage dependent blockade of the NMDA receptor by Mg2+ 

and its high permeability to Ca2+ make inherently appropriate the 

indications for a role in mediating synaptic plasticity. The flow of 

ions through the channel operated by the NMDA receptor is nor-

mally only achieved in the presence of a strong local depolariza-

tion induced, e.g., by Na2+ influx due to activation of glutamate 

receptor AMPA type [56]. Thus, two simultaneous processes are 

required for physiological activation of NMDA receptor learning 

channel, allowing the translation of quantitative information [57]. 

The regulatory mechanisms of neuronal genes triggered by bind-

ing to the NMDA receptor become important to understand the 

mechanisms of learning, memory and other long-term adaptive 

changes in neurons. The neurotransmitter glutamate stimulates 

rapid and transient induction of several genes including the proto-

oncogene c-fos [51] and the promoter Zif-268 [58]. The c-fos is 

the most commonly used markers for neuronal plasticity. While a 

study on the c-fos gene provides information about the neural 

plasticity, Zif-268 has been implicated in long-term memory con-

solidation process [58], [59]. The c-fos promoter contains several 

critical regulatory elements, including the serum response element 

(SRE) that mediate transcription induced by glutamate in neurons. 

Transcription factors of serum response factor (SRF) and Elk-1 

can mediate transcription of SRE in cortical neurons by glutamate 

induction. There are at least two distinct pathways, through which 

glutamate signals act through the SRE: a path SRF-dependent, 

which can operate in the absence of elk; and an Elk-dependent 

pathway. The activation of the Elk transcription dependent path-

way seems to require phosphorylation of Elk-1 by extracellular 

signal regulated kinases (ERKs), providing evidence for a physio-

logical role of ERK in glutamate signaling in neurons. Taken to-

gether, these findings suggest that the SRF, Elk and ERK path-

ways may play an important role in neuroplasticity [51]. Figure 3 

shows the summarized Mechanism of Action of L-glutamate at 

NMDA receptors. 

 

 

 
Fig. 3: Mechanism of Action of L-Glutamate. 

 

The plasma concentrations of L-glutamate can fluctuate during the 

day as a result of changes in the diet, metabolism and protein 

turnover. If these changes were directly transferred to the intersti-

tial space of the brain, they would have effects on neuronal synap-

tic communication [60]. 

Consequently, the passive flux of many polar solutes such as L-

glutamate, is very limited. To compensate the limited passive 

exchange, the cells that make up the external layer of the blood-

brain barrier (BBB) contain different levels (20 or more) of specif-

ic transport systems, which regulate the solute flux from blood to 

the cerebrospinal fluid and brain interstitial fluid and again out 

[60]. 

The first transport systems to be proposed were identified based 

on the results of uptake studies in vivo [61], [62], [63]. Such carri-

ers include X2 system, that acts independently of sodium, promot-

ing absorption with high affinity to amino acid with anionic side 

chains, including L-glutamate and L-aspartate [60]. 

Although such an arrangement helps to protect the greater part of 

the brain from the plasma changes of circulating L-glutamate, 

there are some brain areas that contain no BBB, allowing rapid 

uptake of L-glutamate from the circulation [64]. These are collec-

tively known as circumventricular organs and include the median 

eminence, area postrema, subfornical organ, organ subcomissural, 

pineal gland, pituitary and organum vasculosum of the terminal 

blade [65]. Uptake rates in the brain to small solutes in these areas 

are greater than the BBB by 10 to 1000 times [64], [65], [66], 

[67]. Once inside the brain extracellular fluid, solutes can move 

into adjacent brain areas via intercellular diffusion or by flow 

along the Virchow-Robin spaces. Such movement has been docu-

mented for glutamate and aspartate in animals after high-dose 

administration amino acids [68], [69]. The result is that certain 

areas of the brain are vulnerable to fluctuations in the acute gluta-

mate concentration in plasma of great magnitude as a result of 

"flooding" from the circumventricular organs [60]. 

There are recent hypotheses that suggest a critical role of gluta-

mate receptors in memory potentiation and retention in the hippo-

campus, in long term. Flood et al (1990) trained rats to avoid 

shock [48]. After the formation of learning they injected intracere-

broventricularly agonists and antagonists of various classes of 

glutamate receptors. The retention test (specific memory acquisi-

tion) was assessed one week after training. NMDA receptor ago-

nists have been able to improve memory retention in a dose-

dependent manner. L-glutamate, but not D-glutamate, increased 

memory retention. Administration of antagonists 24h after training 

did not impair memory retention [48]. Vogel et al. (1966) re-

viewed a large number of clinical studies in which glutamic acid 

was administered in healthy subjects and individuals with mental 

retardation, who underwent tests [70]. The authors concluded that 

glutamic acid reduces the severity of mental retardation, resulting 

in better performance in intelligence tests in both subject popula-

tions.  

3.2. GABA 

From the two major classes of neuroactive aminoacids, γ-

aminobutyric acid (GABA) is the major inhibitory [49], [71]. It is 

known that GABA plays a fundamental role in encoding infor-

mation and behavioral control [72], in the regulation of motor 

function [73], [74], [75] and in motor learning [76], [77]. Further 

important, GABA appears to be also involved in action selection 

processes [78] and inhibition of responses that occur in fronto 

striatal circuits [79] and are likely to play key role in neuromodu-

lation of action control processes [78], [80], [81]. 

GABAergic neurons play an important role in the control mecha-

nisms in various centers of the stem and hypothalamus. If its activ-

ity within these structures is compromised, abnormally increased 

responses can be observed, for example: emotional reactivity, 

cardiac and respiratory functions, food and water intake functions, 
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sweating, insulin secretion, gastric acid release and colonic motili-

ty [82].  

GABA synthesis is mediated by glutamic acid decarboxylase 

(GAD), which catalyzes the decarboxylation of glutamate to 

GABA, in the GABAergic nerve endings [83] (Fig. 4). Therefore, 

the amount of GABA in the brain tissue correlates with the 

amount of functional GAD, which requires pyridoxal phosphate 

(Vitamin B6) as a cofactor. In response to an action potential 

GABA release occurs into the synaptic cleft by fusion of vesicles 

containing GABA in the presynaptic membrane [49], [84], [85], 

[86].  

The end of the GABA action in the synapse depends on removal 

of the extracellular space. Neurons and glial cells take GABA by 

specific GABA transporters (GAT). Inside the cells, the widely 

distributed mitochondrial enzyme GABA-transaminase (GABA-

T), catalyzes the conversion of GABA to succinic semialdehyde 

(SSA), which is subsequently oxidized to succinic acid by the 

SSA dehydrogenase (SSADH), entering hereafter in the Krebs 

cycle, which is transformed into α-ketoglutarate. Thereupon, 

GABA-T regenerates glutamate from α-ketoglutarate [49], [84], 

[85], [86] (Fig. 4). 

 

 

 
Fig. 4: Mechanism of Action of GABA. 

 

The CNS cell membranes of most neurons and astrocytes of verte-

brates expresses GABA receptors and, because of this, these re-

ceptors influence in several functions and neural circuits [87, 88]. 

There are two types of GABA receptors. The ionotropic GABA 

receptors (GABAA and GABAC) consist of membrane proteins of 

multiple subunits, which bind to GABA, opening an intrinsic chlo-

ride ion channel [89]. The metabotropic GABA receptors (GAB-

AB) are heterodimeric receptors coupled to G-protein that affect 

neuronal ionic currents via second messengers [49], [90], [91]. 

The most abundant GABA receptors in the CNS consist of the 

ionotropic GABAA [90].  

The inhibitory postsynaptic current (IPSC) consists of quick re-

sponses triggered by very short bursts (high frequency) of GABA 

release in the synapse. The prolonged occupation of the agonist’s 

sites by GABA also leads to a desensitization of the GABAA re-

ceptor, a transition to an inactive state on the agonist [91]. The 

selective activation of chloride channels (crescent conductance) 

deviates neuronal transmembrane voltage to the equilibrium po-

tential of the Cl (-70 mV) [92]. This flow hyperpolarizes Cl or 

stabilizes the postsynaptic cell close to its membrane potential in 

normal resting (Vm ~ 65 mV), thereby reducing the likelihood 

that excitatory stimuli can initiate action potentials. The open Cl- 

channels attenuate the change in membrane potential produced by 

excitatory synaptic currents, a so-called shunting effect. This pro-

cess provides a molecular explanation for the inhibitory effects of 

GABA signaling through GABAA receptors. [49], [93]. 

In the literature there are conflicting results about the GABA entry 

into the brain across the blood brain barrier (BBB). The BBB is a 

tightly sealed layer of brain endothelial cells that form solid joints 

and prevent the majority of solutes between the brain based on the 

size, charge and lipid solubility. However, as pointed out by 

Shyamaladevi and colleagues (2002), recent studies have shown 

that BBB is much more dynamic than was predicted in the past, 

and some solutes passages may occur by transcytosis, transport 

mediated by carrier, or simple diffusion of hydrophobic substanc-

es [94]. Although there is some evidence for only a limited GABA 

brain penetration [95], [96], a more recent study using rats has 

shown that GABA administration alone increased GABA concen-

tration in brain, when compared with untreated mice [97].  

Still on its effects, GABA has also been linked to the effectiveness 

of cascade action processes. Consistent with this hypothesis, Yild-

iz et al (2014) have shown by magnetic resonance spectroscopy 

(MRS) that superior performance of cascade action was associated 

with increased striatal GABA concentrations [98]. Another point, 

the active transcutaneous stimulation of the vagus nerve (tVNS) 

which increases the concentration of GABA and norepinephrine 

(NE), improved functions of response selection during the cascade 

action, compared with the stimulus simulation [99]. These results 

suggest a critical role of GABA in the neuromodulation of cascade 

action processes. They also suggest that the increase [98, 99] not 

too high [100] of GABA levels are associated with better perfor-

mance of these cascade actions. 

In another study, Steenbergen et al (2015b) aimed to provide con-

verged and direct evidence about the possible key role of the GA-

BAergic system in modulating the efficacy of cascade action 

[101]. To this end, the subject received a dose of 800mg of syn-

thetic GABA [97], [102] or 800mg of microcrystalline cellulose 

(placebo). The results suggest that systemic administration of 

synthetic GABA directly influences the effectiveness of the cas-

cade action as measured by a change stop test - a well established 

diagnostic index (Verbruggen et al, 2008). GABA appears to 

modulate the performance as much as a more parallel strategy of 

overlap (i.e., when the interruption of a current task and a change 

of alternative response were required simultaneously) and as a 

strategy more in series step-by-step is requested (ie when switch-

ing to the alternative response was required after the process stop 

now was over) [103]. 

Other studies have shown that psychological stress affect the se-

cretion of salivary cortisol in response to the anticipation of nega-

tive events, such as academic tests [104, 105, 106, 107]. The 
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chromogranin A (CgA) and salivary cortisol are known stress 

markers in humans [108], CgA being ubiquitously secreted in 

several tissue types, including, as recently discovered, in the sub-

mandibular glands [109], [110]. Kanehira et al (2011) observed 

that salivary secretion levels of chromogranin A were significantly 

lower in subjects who did intake 25 and / or 50 mg of GABA in 

comparison with the control group [111]. 

Other studies also report the GABA effect on relaxation and stress 

reduction. Abdou et al (2006) found that oral administration of 

GABA increased significantly alpha waves and decreased beta 

waves in the brain, and has maintained the levels of immuno-

globulin A in saliva, when the subjects were subjected to stress 

conditions, such as crossing a suspension bridge [112]. This study 

showed that GABA could induce relaxation by decreasing anxiety 

while increasing immunity under stress conditions.  

Kanehira et al (2011) determined in a study the effects of a drink 

containing GABA (control group = 0mg, group 1 = 25 mg, group 

2 = 50mg of GABA) in feelings of individuals with chronic fa-

tigue after the performance of a task [111]. Changes in mood 

measured by the Visual Analogue Scale and the Mood Profile 

(VAS and POMS) were significantly different in GABA 50mg 

group and the other two groups. Regarding the cortisol levels and 

CgA in saliva, an arithmetic task was made to induce mental 

stress. Samples of saliva control group showed a significant in-

crease in CgA levels, while the group of 25mg GABA showed a 

significantly lower level of CgA. This trend was more pronounced 

in the 50mg GABA group. The results of cortisol were similar. In 

addition, the number of correct responses on tasks was significant-

ly higher in the 50mg GABA group, whereas there was no marked 

difference in the comparison between the control group and the 

group 25mg GABA [111]. 

Recent evidence also suggests that a deficit in behavioral inhibi-

tion, common in patients with ADHD may be linked to a deficit in 

cortical inhibition of the GABAergic pathway. Experimental stud-

ies have shown that knockout mice for subtype 1 of GABA trans-

porter (GAT1) gain hyperactive profiles and display an impaired 

memory, as well as low levels of concentration and attention with 

increased impulsivity [113]. 

Edden and coworkers (2012) compared two groups of children, 

one of healthy individuals and one of individuals with ADHD, 

using magnetic resonance spectroscopy (MRS) for measuring the 

volume of GABA concentration in the primary somatosensory and 

motor cortex. MRS showed that concentration of GABA in chil-

dren with ADHD is reduced when compared with children with 

normal development, suggesting that there is a deficiency in 

GABA pathway [114]. These studies are summarized in Table 3. 

 
Table 3: Clinical Studies of GABA 

Autor Patients Dose (mg) Effects 

Steenbergen 

et al., 2015 

[101] 

30 800mg 
Modulation of the efficacy of 
the cascade action. 

Abdou et 

al., 2006 

[112]  

13 

100mg 

Increased alpha waves and 

decreased beta waves. De-

creased anxiety, induction of 
relaxation. 

8 
Increased immunity in stress 

situations. 

Kanehira et 
al., 2011 

[111] 

30  25mg 

Good performance in stress 

induction tests, decrease of 

physical fatigue. 

 50mg 

More precise performance in 

stress induction tests, as well as 

reduction of physical and psy-
chological fatigue. 

4. Conclusion 

Because of their metabolic interdependence, the B complex vita-

mins have to be regarded as a functional unit whose individual 

members act like links in a chain of biochemical reactions. Four 

major mechanisms can be identified by which micronutrients in-

fluence cognitive function: through their role in neurotransmitter 

synthesis; by neuronal membrane and receptor modification; by 

influencing brain energy requirements; and via their role in Hcy 

metabolism. 

Inhibitory and excitatory neurotransmitters regulate diverse behav-

ioral processes, including sleep, learning, memory and sensation 

of pain. They are also implicated in many pathological processes, 

such as epilepsy and neurotoxicity. Clinical evidence shows that 

all B vitamins have a fundamental role in neurotransmitters, lipids 

and proteins metabolism, and act differently in various enzyme 

systems, participating as co-enzymes in the activation of numer-

ous metabolic processes 
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