Photo-acoustic properties of nanoTiO2:Er

 
 
 
  • Abstract
  • Keywords
  • References
  • PDF
  • Abstract


    Nanocrystalline Er-doped TiO2 was prepared by sol-gel at room temperature. X-ray diffraction, photoacoustic spectroscopy (optical absorption), transmission electron microscopy (TEM), and electron dispersion microscopy (EDS) were carried out on both as-prepared and thermally-annealed (air at 700 ºC) samples, revealing the anatase crystalline phase of TiO2. The samples exhibit an average grain size from 38 to 5.1 nm, as the nominal concentration of Er varies from 0 % to 7 %. The photoacoustic spectra evidence the absorption edge at 300 nm attributed to TiO2, as well as several electronic transitions which are atomic energy absorption-line levels characteristics of Er.


  • Keywords


    Titanium Dioxide; Crystal Morphology; Doping; Nanomaterials; Dielectric Materials Semicolon.

  • References


      [1] Yan Y, Chaudhuri SR, Chen DG & Sarkar A (1995), Sol- Gel Synthesis of Titania Thin-Film-Stabilized Porous Silica Coating. Chemistry of Materials 7, 2007-2009. http://dx.doi.org/10.1021/cm00059a006.

      [2] Gusamano G, Montesperelli G, Nuziante P, Traversa E, Montenero A, Braghini M, Mattogno G & Bearzotti A (1993), Humidity-Sensitive properties of Titania Films Prepared using the Sol-Gel Process. Journal of Ceramic Society of Japan 101[9], 1095-1100. http://dx.doi.org/10.2109/jcersj.101.1095.

      [3] Hamasaki Y, Ohkubo S, Murakami K, Sei H & Nogami G (1994), Photoelectrochemical Properties of Anatase and Rutile Films Prepared by the Sol‐Gel Method. Journal of the Electrochemical Society 141[3], 660-663. http://dx.doi.org/10.1149/1.2054787.

      [4] Bahtat A, Bouazaoui M, Bahtat MM, Garapon C, Jacquier B & Mugnier J (1996), Up-conversion fluorescence spectroscopy in Er3+: TiO2 planar waveguides prepared by a Sol-Gel process. Journal of Non-Crystalline Solids 202, 16-22. http://dx.doi.org/10.1016/0022-3093(96)00172-X.

      [5] Huang SY, Kavan L, Exnar I & Grätzel M (1995), Rocking chair Lithium battery based on nanocrystalline TIO2 (Anatase). Journal of the Electrochemical Society 142, 142-144. http://dx.doi.org/10.1149/1.2048726.

      [6] Tomás SA, Stolik S, Palomino R, Lozada R, Persson C, Pepe I, & Ferreira da Silva A (2005), Influence of rhodamine 6G doping on the optical properties of TiO2 sol-gel films. Journal of Applied Physics 98, 073516. http://dx.doi.org/10.1063/1.2073972.

      [7] Tomás SA, Stolik S, Palomino R, Lozada R, Persson C, Ahuja R, Pepe I, & Ferreira da Silva A (2005), Optical properties of rhodamine 6G-doped TiO2 sol-gel films. Journal de Physique IV 125, 415-417. http://dx.doi.org/10.1051/jp4:2005125097.

      [8] Tomás SA, Palomino R, Lozada R, da Silva Jr EF, de Vasconcelos EA, de Azevedo WM, Persson C, Pepe I, David DGF, & Ferreira da Silva A (2005), Optical and Electronic Characterization of the Band Structure of Blue Methylene and Rhodamine 6G-doped TiO2 Sol-Gel Nanofilms. Microelectronics Journal 36, 570-573. http://dx.doi.org/10.1016/j.mejo.2005.02.093.

      [9] Ferreira da Silva A, Pepe I, Gole JL, Tomás SA, Palomino R, de Azevedo WM, da Siva Jr EF, Ahuja R & Persson C (2006), Optical properties of in situ doped and undoped titania nanocatalysts and doped titania sol-gel nanofilms. Applied Surface Science 252, 5365-5367. http://dx.doi.org/10.1016/j.apsusc.2005.12.041.

      [10] Komuro S, Katsumata T, Kokai H, Morikawa T & Zhao X (2002), Change in photoluminescence from Er-doped TiO2 thin films induced by optically assisted reduction. Applied Physics Letters 81, 4733-4735. http://dx.doi.org/10.1063/1.1530733.

      [11] Gaponenko NV, Sergev OV, Stepanova EA, Parkun VM, Mudryi AV, Gnaser H, Misiewicz J, Heiderhoff R, Balk LJ, & Thompson GE (2001), Optical and Structural Characterization of Erbium-Doped TiO2 Xerogel Films Processed on Porous Anodic Alumina. Journal of the Electrochemical Society 148[2], H13-H16. http://dx.doi.org/10.1149/1.1339864.

      [12] Anatase: PDF # 73-1764. Rutile: PDF # 78-1509. Brookite: PDF # 76-1936.

      [13] Jeon S & Braun P (2003), hydrothermal synthesis of Er-doped luminescent TiO2 nanoparticles. Chemistry of Materials 15, 1256-1263. http://dx.doi.org/10.1021/cm0207402.

      [14] Toyoda T & Tsuboya I (2003), apparent band-gap energies of mixed TiO2TiO2 nanocrystals with anatase and rutile structures characterized with photoacoustic spectroscopy. Review of Scientific Instruments 74, 782-784. http://dx.doi.org/10.1063/1.1512984.

      [15] Kaminskii AA (1990), Laser Crystals: Their Physics and Properties, Springer-Verlag, pp 10. http://dx.doi.org/10.1007/978-3-540-70749-3.

      [16] Bahtat A, Bouderbala B, Bahtat M, Boauzaoui M, Mugnier J & Druetta M (2006), Structural characterization of Er3+ doped sol–gel TiO2 planar optical waveguides. Thin Solid Films 506/507, 59-62.

      [17] Li J-G, Wang X-H, Kamiyama H, Ishigaki T, & Sekiguchi T (2006), RF plasma processing of Er-doped TiO2 luminescent nanoparticles. Thin Solid Films 506/507, 292-296. http://dx.doi.org/10.1016/j.tsf.2005.08.093.

      [18] Elim HI, Ji W, Yuwono AH, Xue JM, & Wang J, (2003), Ultrafast optical nonlinearity in poly(methylmethacrylate)-TiO2poly(methylmethacrylate)-TiO2 nanocomposites. Applied Physics Letters 82, 26913693. http://dx.doi.org/10.1063/1.1568544.


 

View

Download

Article ID: 5739
 
DOI: 10.14419/ijbas.v5i4.5739




Copyright © 2012-2015 Science Publishing Corporation Inc. All rights reserved.