Bending Strength of Welded Joints in TMCP Steel Square Tubular Profiles “T†Connexions

  • Authors

    • Rafael Luciano Dalcin Federal University of Rio Grande do Sul, PPGE3M, Welding & Related Techniques Laboratory
    • Ivan Guerra Machado
    • Arnaldo Ruben Gonzalez
    • Cintia Cristiane Petry Mazzaferro
    2016-07-02
    https://doi.org/10.14419/ijet.v5i3.6195
  • GMAW, TMCP Steel, Tubular Profile, Welded Joint Bending Strength.
  • The use of DOMEX 700 MCTM steel weldments is still little explored, due to some concern of the validity of the rules imposed by several standards and Codes for this class of steel. This material has low ductility and consequently the relation between tensile strength and yield strength is significantly lower than ordinary structural steels. For this reason, the instability phenomena are more critical than the instability phenomena of ordinary structural steels. Therefore, the aim of this study was to obtain detailed data on the mechanical efficiency of joints welded by GMAW. Six different heat inputs were used on square tubular profiles of TMCP steel. The tubular profiles were placed as a column/beam weldment with transverse and longitudinal welds positioned in relation to the loading axis. Twelve welded structures were instrumented with extensometer and tested in simple bending. Comparing the obtained data, it was verified that longitudinal welded joints presented higher bending strength than transversal welded joints. In the case of longitudinal joints, two weld beads were subjected to bending efforts, and in the case of transverse joints, only one weld bead resisted bending forces.

  • References

    1. [1] Rajan, T. V.; Sharma, C. P.; Sharma, A. Heat Treatment: Principles and Techniques. PHI Learning, 2011. 408 p.

      [2] SSAB Tunnplat. Sheet Steel Joining Handbook: Joining of High Strength Steels. Sweden: SSAB Tunnplat AB, 2004.

      [3] European Committee for Standardization. EN 10149-2. Hot Rolled Flat Products Made of High Yield Strength Steels for Cold Forming – Part 2: Delivery Conditions for Thermomechanically Rolled Steels. Brussels: ECS, 1995.

      [4] Machado, I. G. Falhas de Estruturas de Aço Soldadas Devido a Reduzida Ductilidade. Soldagem & Inspeção, 18(4): 391-403, Out/Dez 2013. http://dx.doi.org/10.1590/S0104-92242013000400011.

      [5] Dalcin, R. L.; Machado, I. G.; Gonzalez, A. R.; Mazzaferro, J. A. E. Efeitos da Energia de Soldagem e Consumível Sobre a Resistência à Flexão Simples de Juntas Soldadas em Perfis Tubulares de Aço TMCP. Soldagem & Inspeção, 21(1): 92-102, Jan/Mar 2016. http://dx.doi.org/10.1590/0104-9224/SI2101.09.

      [6] Machado, I. G. Dimensionamento de Juntas Soldadas de Filete: Uma Revisão Crítica. Soldagem & Inspeção, 16(2): 189-201, Abr/Jun 2011. http://dx.doi.org/10.1590/S0104-92242011000200011.

      [7] Associação Brasileira de Normas Técnicas. NBR 6892. Materiais Metálicos: Ensaio de Tração à Temperatura Ambiente. Rio de Janeiro: ABNT, 2002.

      [8] Miller, D. K. Welding of Steel Bridges: Highway Structures Design Handbook. Cleveland: The Lincoln Electric Company, 1994. 88 p.

      [9] American Institute of Steel Construction. Welded Connections – A Primer for Engineers. Chicago: AISC, 2006.

      [10] Machado, I. G. Novos Paradigmas para Especificação de Juntas Soldadas. Soldagem & Inspeção, 17(3): 278-288, Jul/Set 2012. http://dx.doi.org/10.1590/S0104-92242012000300012.

      [11] ESAB. Catálogo de Consumíveis. Disponível em: <http://www.esab.com.br/>. Acesso em: 12 Jan. 2015.

      [12] American Welding Society. AWS D1.1. Structural Welding Code – Steel. Miami: AWS, 2006.

      [13] American Society for Testing and Materials. ASTM E3-95. Standard Practice for Preparation of Metallographic Specimens. West Conshohocken: ASTM, 1995.

      [14] American Society for Testing and Materials. ASTM Standard E384-11. Standard Test Method for Knoop and Vickers Hardness of Materials. West Conshohocken: ASTM, 2011.

      [15] Gere, J. M; Goodno, B. J. Mechanics of Materials. 7. Ed. Canada: Cengage Learning, 2009. 1022 p.

      [16] Beer, F. P.; Johnston Jr, R. Resistência dos Materiais. 3. Ed. São Paulo: Pearson Makron Books, 1995. 1255 p.

      [17] Hochhauser, F.; Ernst, W.; Rauch, R.; Vallant, R.; Enzinger, N. Influence of the Soft Zone on the Strength of Welded Modern HSLA Steels. Welding in the World, 56(5-6): 77-85, 2012. http://dx.doi.org/10.1007/BF03321352.

      [18] Machado, I.G. Condução do Calor na Soldagem: Fundamentos & Aplicações. 1. Ed. Porto Alegre: Imprensa Livre Editora LTDA, 2000. 119 p.

      [19] Easterling, K. Introduction to the Physical Metallurgy of Welding. 2. Ed. Oxford: Butterworth-Heinemann LTD, 1992. 270 p.

      [20] Pirinen, M. The Effects of Welding Heat Input on the Usability of High Strength Steels in Welded Structures: 2013. 174 p. Thesis (Doctor) - Lappeenranta University of Technology, Finland.

      [21] Kou S. Welding Metallurgy. 2. Ed. John Wiley & Sons, 2003. 461 p.

      [22] Górka, J. Influence of the Maximum Temperature of the Thermal Cycle on the Properties and Structure of the HAZ of Steel S700MC. IOSR Journal of Engineering, 3(11): 22-28, Nov 2013. http://dx.doi.org/10.9790/3021-031142228.

      [23] Rocha, I.C.L.; Machado, I.G.; Mazzaferro, C.C.P. Mechanical and Metallurgical Properties of DP 1000 Steel Square Butt Welded Joints with GMAW. International Journal of Engineering & Technology, 4(1): 26-34, 2015. http://dx.doi.org/10.14419/ijet.v4i1.3928.

  • Downloads

  • How to Cite

    Dalcin, R. L., Machado, I. G., Gonzalez, A. R., & Mazzaferro, C. C. P. (2016). Bending Strength of Welded Joints in TMCP Steel Square Tubular Profiles “T” Connexions. International Journal of Engineering & Technology, 5(3), 70-76. https://doi.org/10.14419/ijet.v5i3.6195