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Abstract

The purpose of this paper is to provide sufficient conditions for the existence of a unique best proximity point
for generalized Mizoguchi- Takahashi contractions.Our paper provides an extension of a result due to Gordji and
Ramezani[3].
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1. Introduction

Let (X, d) be a metric space.Denote by P(X) the set of all nonempty subsets of X and CB(X) the family of all
nonempty closed and bounded subsets of X.A point x in X is a fixed point of a multivalued map T : X → P (X), if
x ∈ Tx.Nadler [5] extended the Banach contraction principle to multivalued mappings.

Theorem 1.1 (5) Let (X, d) be a complete metric spaces and let T : X → CB(X) be a multivalued map. Assume
that there exists r ∈ [0, 1) such that

H(Tx, Ty) ≤ rd(x, y)

for all x, y ∈ X,where H is the Hausedorff metric with respect to d.Then T has a fixed point.

The fixed point theory for multivalued mappings developed rapidly after the publication of Nadler’s paper [5]
in which he established a multivalued version of Banach’s contraction principle. A huge number of generalizations
of this principle appear in the literature. Particularly, the following generalization of Nadler’s fixed point theorem
due to Mizoguchi- Takahashi [4].

Theorem 1.2 (4) Let (X, d) be a complete metric space and T : X → CB(X) be a multivalued map. Assume that

H(Tx, Ty) ≤ φ(d(x, y))d(x, y) (1)

for all x, y ∈ X, where φ is a function from [0,∞) into [0, 1) satisfying limsups→t+φ(s) < 1 for all t ≥ 0. Then T
has a fixed point.
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Recently, Amini-Harandi and O’Regan [1] obtained a nice generalization of Mizoguchi and Takahashi’s fixed
point theorem.Throughout the article, let Ψ be the family of all functions ψ : [0,∞) → [0,∞) satisfying the follow-
ing conditions:
(a) ψ(s)= 0 ⇐⇒ s=0,
(b) ψ is nondecreasing,

We denote by Φ the set of all functions φ : [0,∞) → [0, 1) satisfying limsupr→t+φ(r) < 1 for all t ≥ 0.
Amini-Harandi and O’Regan generalized the Mizoguchi-Takahashi contraction condition (1) as follows:

Theorem 1.3 (1) Let (X, d) be a complete metric space and T : X → CB(X) be a multivalued map. Assume that

φ(H(Tx, Ty)) ≤ φ(ψ(d(x, y)))ψ(d(x, y))

for all x, y ∈ X, where ψ ∈ Ψ is lower semicontinuous with limsups→0+
s

φ(s) < ∞ and φ ∈ Φ. Then T has a fixed
point.

Very recently, Gordji and Ramezani [3] established a new fixed point theorem for a self map T : X → X satisfying
a generalized Mizoguchi-Takahashi’s condition in the setting of ordered metric spaces. The main result in [3] is the
following.

Theorem 1.4 (3) Let (X, d,¹) be a complete ordered metric space and T : X → X an increasing mapping such
that there exists an element x0 ∈ X with x0 ¹ Tx0. Suppose that there exists a lower semicontinuous function
ψ ∈ Ψ and φ ∈ Φ such that

ψ(d(Tx, Ty)) ≤ φ(ψ(d(x, y)))ψ(d(x, y)).

for all x, y ∈ X such that x and y are comparable. Assume that either T is continuous or X is such that the following
holds: any ¹-nondecreasing sequence {xn} with xn → x implies xn ¹ x for all n. Then T has a fixed point.

The aim of this paper is to give a generalization of the Theorem 1.4 by considering a non-self map T.

2. Preliminary notes

First, we present a brief discussion about a best proximity point.
Let A be a nonempty subset of ametric space (X,d) and T : A → X be a mapping.The solutions of the equation

Tx = x are fixed point of T.Consequently, T(A)∩A6= ∅ is a necessary condition for the existence of a fixed point
for the operator T.If this necessary condition does not hold, then d(x, Tx) > 0 for any x ∈ A and the mapping
T : A → X does not have any fixed point.In this setting, our aim is to find an element x ∈ A such that d(x, Tx) is
minimum in some sense. A point x in A for which d(x, Tx) = d(A, B) is called a best proximity point of T.

In our context, we consider two nonempty subsets A and B of a complete metric space and a mapping T : A → B
satisfying a generalized Mizoguchi-Takahashi’s condition and find a best proximity point of T. We give an example
to support our result.

Let A and B be two nonempty subsets of a metric space (X,d). We denote by A0 and B0 the following sets:

A0 = {x ∈ A : d(x, y) = d(A,B) for some y ∈ B},
B0 = {y ∈ B : d(x, y) = d(A, B) for some x ∈ A},
where d(A,B) = inf{d(x, y) : x ∈ A and y ∈ B}.

In[6] authers present sufficient conditions which determine when the sets A0 and B0 are nonempty.

Definition 2.1 Let A, B be two nonempty subsets of a metric space (X, d). A mapping T : A → B is said to be a
generalized Mizoguchi- Takahashi contractions if there exist φ ∈ Φ and ψ ∈ Ψ such that

ψ(d(Tx, Ty)) ≤ φ(ψ(d(x, y)))ψ(d(x, y))

for any x, y ∈ A.
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Definition 2.2 (6) Let (A,B) be a pair of nonempty subsets of a metric space (X, d) with A0 6= ∅.Then the pair
(A,B) is said to have the P-property if and only if for any x1, x2 ∈ A0 and y1, y2 ∈ B0,

{
d(x1, y1) = d(A,B)
d(x2, y2) = d(A,B)

}
=⇒ d(x1, x2) = d(y1, y2).

3. Main results

Theorem 3.1 Let (A,B) be a pair of nonempty closed subsets of a complete metric space (X,d) such that A0

is nonempty. Let T : A → B be a continuous generalized Mizoguchi- Takahashi contraction mapping satisfying
T (A0) ⊂ B0. Suppose that the pair (A,B) has the P-property.Then there exists a unique x∗ in A such that d(x∗, Tx∗)
= d(A, B).

Proof. Since A0 is nonempty, we take x0 ∈ A.As Tx0 ∈ T (A0) ⊂ B0, we can find x1 ∈ A0 such that d(x1, Tx0)
= d(A,B).Similarly, since Tx1 ∈ T (A0) ⊂ B0, there exists x2 ∈ A0 such that d(x2, Tx1) = d(A,B). Repeating this
process, we can get a sequence {xn} in A0 satisfying

d(xn+1, Txn) = d(A,B) for any n ∈ N

Since (A,B) has the P-property, we have that

d(xn, xn+1) = d(Txn−1, Txn) for any n ∈ N.

Taking into account that T is a generalized Mizoguchi- Takahashi contraction, for any n ∈ N, we have that

ψ(d(xn, xn+1)) ≤ φ(ψ(d(xn−1, xn)))ψ(d(xn−1, xn))
≤ ψ(d(xn−1, xn))

Since ψ is nondecreasing, we obtain

d(xn, xn+1) ≤ d(xn−1, xn)

This means d(xn, xn+1) is a non-increasing sequence of positive real numbers.Hence there exists µ ≥ 0 such that

limn→∞d(xn, xn+1) = µ

Since φ ∈ Φ, we have limsupr→µφ(r) < 1.Then, there exist α ∈ [0, 1) and ε > 0 such that φ(r) ≤ α for all
r ∈ [µ, µ + ε). We can take n0 ∈ N such that µ ≤ d(xn, xn+1) ≤ µ + ε for all n ≥ n0. Then for all n ≥ n0, we have

ψ(d(xn, xn+1)) ≤ φ(ψ(d(xn−1, xn)))ψ(d(xn−1, xn))

Letting r →∞ in the above inequality,we obtain that

ψ(µ) ≤ αψ(µ) (2)

Since α ∈ [0, 1), this implies that µ = 0.Thus, we have

limn→∞d(xn, xn+1) = 0 (3)

Now we claim that the sequence {xn} is a Cauchy sequence.Since limn→∞d(xn, xn+1) = 0, it is sufficient to prove
that {x2n} is Cauchy sequence.

Suppose on the contrary that {x2n} is not a Cauchy sequence.Then there exist ε > 0 and subsequences {x2nk
}

and {x2mk
} of {x2n} such that nk > mk > k and

d(x2mk
, x2nk

) ≥ ε (4)
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and

d(x2mk
, x2nk−2) < ε (5)

Now, from (4) and the triangle inequality, we get

ε ≤ d(x2mk
, x2nk

)
≤ d(x2mk

, x2nk−2) + d(x2nk−2 , x2nk−1) + d(x2nk−1 , x2n)

Letting k →∞ and using (3),we get

limk→∞d(x2mk
, x2nk

) = ε (6)

By the fact

|d(x2mk
, x2nk+1)− d(x2mk

, x2nk
)| ≤ d(x2nk

, x2nk+1) (7)

|d(x2mk−1 , x2nk
)− d(x2mk

, x2nk
)| ≤ d(x2mk−1 , x2mk

) (8)

using (3) and (6), we obtain

limk→∞d(x2mk−1 , x2nk
) = limk→∞d(x2mk

, x2nk+1) = ε (9)

Moreover, from

|d(x2mk−1 , x2nk+1)− d(x2mk−1 , x2nk
)| ≤ d(x2nk

, x2nk+1) (10)

and combining with (3) and (9), we conclude that

limk→∞d(x2mk−1 , x2nk+1) = ε (11)

from (9), we coclude that

limk→∞d(Tx2mk−1 , Tx2nk
) = ε (12)

ψ(d(x2mk
, x2nk+1)) = ψ(d(Tx2mk−1 , Tx2nk

))
≤ φ(ψ(d(x2mk−1 , x2nk

)))ψ(d(x2mk−1 , x2nk
))

Letting k →∞ and using (2) and (12), we have

ψ(ε) ≤ αψ(ε)

a contradiction.Therefore, {xn} is a Cauchy sequence.Since {xn} ⊂ A and A is closed subset of a complete metric
space (X,d), we can find x∗ ∈ A such that xn → x∗.
Since T is continuous ,we have Txn → Tx∗. Taking into account that the sequence (d(xn+1, Txn)) is a constant
sequence with value d(A,B),we deduce

d(x∗, Tx∗) = d(A,B).

This means that x∗ is a best proximity point of T. For uniqueness, suppose that x1 and x2 are two best proximiy
points of T with x1 6= x2. This means that

d(x1, Tx1) = d(A,B)
d(x2, Tx2) = d(A,B)

Using the P-property, we have

d(x1, x2) = d(Tx1, Tx2)

Again, T is generalized Mizoguchi- Takahashi contraction, we have

ψ(d(x1, x2)) = ψ(Tx1, Tx2) ≤ φ(ψ(d(x1, x2)))ψ(d(x1, x2)) ≤ αψ(d(x1, x2))

a contradiction.Therefore, x1 = x2.
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Corollary 3.2 Let (A,B) be a pair of nonempty closed subsets of a complete metric space (X,d) such that A0 is
nonempty. Let T : A → B be a continuous mapping satisfying T (A0) ⊂ B0, and Mizoguchi- Takahashi contraction
condition d(Tx, Ty) ≤ φ(d(x, y))d(x, y) for any x, y ∈ A. Suppose that the pair (A,B) has the P-property.Then
there exists a unique x∗ in A such that d(x∗, Tx∗) = d(A,B).

Example 3.3 Consider X = <2 with the usual metric.
Let A and B be the subsets of X defined by

A = {0} × [0,∞) and B = {1} × [0, 1).

Obviously d(A,B) = 1 and B is not closed subset of X.
Note that A0 = 0× [0, 1) and B0 = B.
We consider the mapping T : A → B defined as

d(0, x) = (1,
x

1 + x
) for any (0, x) ∈ A.

In the sequel, we check that T is generalized Mizoguchi- Takahashi contraction.
In fact, for (0, x), (0, y) ∈ A with x 6= y, we have

d(T (0, x), T (0, y)) = d((1,
x

1 + x
), (1,

y

1 + y
))

= | x

1 + x
− y

1 + y
|

= | x− y

(1 + x)(1 + y)
|

≤ |x− y|
1 + |x− y|

= φ(ψ(d((0, x), (0, y)))ψ(d((0, x), (0, y))).

Where ψ(t) = t for t > 0 and φ(t) = 1
1+t with limsupr→t+φ(r) < 1 for t ≥ 0.

Notice that the pair (A,B) satisfies the P-property.
Indeed, if

d((0, x1), (1, y1)) =
√

1 + (x1 − y1)2 = d(A,B) = 1,

d((0, x2), (1, y2)) =
√

1 + (x2 − y2)2 = d(A,B) = 1,

then x1 = y1 and x2 = y2 and consequently,

d((0, x1), (0, x2)) = |x1 − x2| = |y1 − y2| = d((1, y1), (1, y2)).

By Theorem 3.1, T has a unique best proximity point.
Obviously, the point (0, 0) ∈ A is a unique best proximity point for T, since

d((0, 0), T (0, 0)) = d((0, 0), (1, 0)) = 1 = d(A, B)

If (0, x) ∈ A is a best proximity point for T, then

1 = d(A, B) = d((0, x), T (0, x)) = d((0, x), (1,
x

1 + x
)) =

√
1 + (x− x

1 + x
)2,

and this gives us

(x− x

1 + x
) = 0 (13)

the solution of (12) is x = 0 and is unique.Hence (0, 0) ∈ A is unique best proximity point for T.
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