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Abstract

The main purpose of the present paper is to introduce co (f, p, s) , c (f, p, s) l∞ (f, p, s) and lp (f, p, s) of sequences
of interval numbers defined by a modulus function. Furthermore, some inclusion theorems related to these spaces
are given.
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1. Introduction

Interval arithmetic was first suggested by Dwyer [8] in 1951. Development of interval arithmetic as a formal
system and evidence of its value as a computational device was provided by Moore [11] in 1959 and Moore and
Yang [13] 1962. Furthermore, Moore and others [9], [10], [11] and [14] have developed applications to differential
equations.

Chiao in [6] introduced sequence of interval numbers and defined usual convergence of sequences of interval
number. Şengönül and Eryilmaz in [7] introduced and studied bounded and convergent sequence spaces of interval
numbers and showed that these spaces are complete metric space. Recently, Esi in [1], [2], [3], [4] and [5] defined
and studied different properties of interval numbers.

We denote the set of all real valued closed intervals by IR. Any elements of IR is called interval number
and denoted by A = [xl, xr] . Let xl and xr be first and last points of x interval number, respectively. For
A1, A2 ∈IR, we have A1 = A2 ⇔ x1l

=x2l
,x1r=x2r . A1 + A2 = {x ∈ R : x1l

+ x2l
≤ x ≤ x1r + x2r} ,and if α ≥ 0,

then αA = {x ∈ R : αx1l
≤ x ≤ αx1r} and if α < 0, then αA = {x ∈ R : αx1r ≤ x ≤ αx1l

} ,

A1.A2 = {x ∈ R : min {x1l
.x2l

, x1l
.x2r , x1r .x2l

, x1r .x2r} ≤ x ≤ max {x1l
.x2l

, x1l
.x2r , x1r .x2l

, x1r .x2r}} .

The set of all interval numbers IR is a complete metric space defined by

d
(
A1, A2

)
= max {|x1l

− x2l
| , |x1r − x2r |} [12].

In the special case A1 = [a, a] and A2 = [b, b] , we obtain usual metric of R. Let us define transformation f : N→ R
by k → f (k) = A, A =

(
Ak

)
. Then A =

(
Ak

)
is called sequence of interval numbers. The Ak is called kth term

of sequence A =
(
Ak

)
. w denotes the set of all interval numbers with real terms and the algebraic properties of w

can be found in [14].
Now we give the definition of convergence of interval numbers:
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Definition 1.1 ([6]) A sequence A =
(
Ak

)
of interval numbers is said to be convergent to the interval number xo

if for each ε > 0 there exists a positive integer ko such that d
(
Ak, Ao

)
< ε for all k ≥ ko and we denote it by

limk Ak = Ao.

Thus, limk Ak = Ao ⇔ limk Akl
= Aol

and limk Akr = Aor .
We recall that modulus function is a function f : [0,∞) → [0,∞) such that

(a) f (x) = 0 if and only if x = 0,
(b) f (x + y) ≤ f (x) + f (y) for all x, y ≥ 0,
(c) f is increasing,
(d) f is continuous from the right at zero.

It follows from (a) and (d) that f must be continuous everywhere on [0,∞).
Let p = (pk) be a bounded sequence of strictly positive real numbers. If H = supkpk, then for any complex

numbers ak and bk

|ak + bk|pk ≤ C (|ak|pk + |bk|pk) (1)

where C = max(1, 2H−1).

Definition 1.2 A set of X sequences of interval numbers is said to be solid (or normal) if
(
Bk

) ∈ X whenever
d

(
Bk, 0

) ≤ d
(
Ak, 0

)
for all k ∈ N, for some

(
Ak

) ∈ X.

In this paper, we essentially deal with the metric spaces co (f, p, s) , c (f, p, s) , l∞ (f, p, s) and lp (f, p, s) of
sequences of interval numbers defined by a modulus function which are generalization of the metric spaces co, c,
l∞ and lp of sequences of interval numbers. We state and prove some topological and inclusion theorems related to
those sets.

2. Main results

Let f be a modulus function and s ≥ 0 be a real number and p = (pk) be a sequence of strictly positive real
numbers. We introduce the sets of sequences of interval numbers as follows:

co (f, p, s) =
{

A =
(
Ak

)
: lim

k
k−s

[
f

(
d

(
Ak, 0

))]pk = 0
}

,

c (f, p, s) =
{

A =
(
Ak

)
: lim

k
k−s

[
f

(
d

(
Ak, Ao

))]pk = 0
}

,

l∞ (f, p, s) =
{

A =
(
Ak

)
: sup

k
k−s

[
f

(
d

(
Ak, 0

))]pk
< ∞

}

and

lp (f, p, s) =

{
A =

(
Ak

)
:

∑

k

k−s
[
f

(
d

(
Ak, 0

))]pk
< ∞

}
.

Now, we may begin with the following theorem.

Theorem 2.1 The sets co (f, p, s) , c (f, p, s) , l∞ (f, p, s) and lp (f, p, s) of sequences of interval numbers are closed
under the coordinatewise addition and scalar multiplication.

Proof. It is easy, so we omit the detail.

Theorem 2.2 The sets co (f, p, s) , c (f, p, s) , l∞ (f, p, s) and lp (f, p, s) of sequences of interval numbers are com-
plete metric spaces with respect to the metrics

d∞ (A,B) = sup
k

k−s
[
f

(
d

(
Ak, Ao

))] pk
M
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and

dp (A,B) =

{∑

k

k−s
[
f

(
d

(
Ak, Bk

))]pk

} 1
M

respectively, where A =
(
Ak

)
and B =

(
Bk

)
are elements of the sets co (f, p, s) , co (f, p, s) , l∞ (f, p, s) and lp (f, p, s)

and M = max (1, supk pk = H)

Proof. We consider only the space co (f, p, s) , since the proof is similar for the spaces c (f, p, s) , l∞ (f, p, s) and
lp (f, p, s) . One can easily establish that d∞ defines a metric on co (f, p, s) which is a routine verification, so we omit

it. It remains to prove the completeness of the space co (f, p, s) . Let
(
A

i
)

be any Cauchy sequence in the space

co (f, p, s) , where A
i
=

(
A

(i)

o , A
(i)

1 , A
(i)

2 , ...
)

. Then, for a given ε > 0 there exists a positive integer no (ε) such that

d∞
(
A

i
, A

j
)

= sup
k

k−s
[
f

(
d

(
A

(i)

k , A
(j)

k

))] pk
M

< ε (2)

for all i, j > no (ε) . We obtain for each fixed k ∈ N from (2) that

k−s
[
f

(
d

(
A

(i)

k , A
(j)

k

))] pk
M

< ε (3)

for all i, j > no (ε) . (3) means that

lim
i,j→∞

k−s
[
f

(
d

(
A

(i)

k , A
(j)

k

))] pk
M

= 0. (4)

Since k−s 6= 0 for all k ∈ N and f is continuous, we have from (4) that

f

[
lim

i,j→∞

(
d

(
A

(i)

k , A
(j)

k

))]
= 0. (5)

Therefore, since f is a modulus function one can derive by (5) that

lim
i,j→∞

d
(
A

(i)

k , A
(j)

k

)
= 0 (6)

which means that
(
A

(i)

k

)
is a Cauchy sequence in IR for every fixed k ∈ N. Since IR is complete, it converges, say

A
(i)

k → Ak as i →∞. Using these infinitely many limits, we defined the interval sequence
(
Ak

)
=

(
Ao, A1, A2, ...

)
.

Let us pass to limit firstly as j → ∞ and nextly taking supremum over k ∈ N in (3) we obtain d∞
(
A

i
, Ak

)
≤ ε.

Since
(
A

(i)

k

)
∈ co (f, p, s) for each i ∈ N, there exists ko ∈ N such that

k−s
[
f

(
d

(
A

(i)

k , 0
))]pk

< ε

for every k ≥ ko (ε) and for each fixed i ∈ N. Therefore, since

k−s
[
f

(
d

(
Ak, 0

))]pk ≤ Ck−s
[
f

(
d

(
A

(i)

k , Ak

))]pk

+ Ck−s
[
f

(
d

(
A

(i)

k , 0
))]pk

hold by triangle inequality for all i, k ∈ N, where C = max(1, 2H−1). Now for all k ≥ ko (ε) , we have

k−s
[
f

(
d

(
Ak, 0

))]pk ≤ 2ε.

This shows that
(
Ak

) ∈ co (f, p, s) . Since
(
A

(i)

k

)
was an arbitrary Cauchy sequence, the the space co (f, p, s) is

complete.

Theorem 2.3 The spaces co (f, p, s) , l∞ (f, p, s) and lp (f, p, s) are solid.
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Proof. Let X (f, p, s) denotes the anyone of the spaces co (f, p, s) , l∞ (f, p, s) and lp (f, p, s) . Suppose that

d
(
Bk, 0

) ≤ d
(
Ak, 0

)
(7)

holds for some
(
Ak

) ∈ X (f, p, s) . Since the modulus function is increasing, one can easily see by (7) that

lim
k

k−s
[
f

(
d

(
Bk, 0

))]pk ≤ lim
k

k−s
[
f

(
d

(
Ak, 0

))]pk
,

sup
k

k−s
[
f

(
d

(
Bk, 0

))]pk ≤ sup
k

k−s
[
f

(
d

(
Ak, 0

))]pk

and
∑

k

k−s
[
f

(
d

(
Bk, 0

))]pk ≤
∑

k

k−s
[
f

(
d

(
Ak, 0

))]pk

.

The above inequalities yield the desired that
(
Bk

) ∈ X (f, p, s) .

Theorem 2.4 Let infk pk = h > 0. Then
a)

(
Ak

) ∈ c implies
(
Ak

) ∈ c (f, p, s) ,

b)
(
Ak

) ∈ c (p, s) implies
(
Ak

) ∈ c (f, p, s) ,

c) β = limt
f(t)

t > 0 implies c (p, s) = c (f, p, s) .

Proof. a) Suppose that
(
Ak

) ∈ c. Then limk d
(
Ak, Ao

)
= 0. As f is modulus function, then

lim
k

f
(
d

(
Ak, Ao

))
= f

[
lim

k

(
d

(
Ak, Ao

))]
= f(0) = 0.

As infk pk = h > 0, then limk

[
f

(
d

(
Ak, Ao

))]h
= 0. So, for 0 < ε < 1, ∃ko such that for all k > ko

[
f

(
d

(
Ak, Ao

))]h
<

ε < 1, an as pk ≥ h for all k,

[
f

(
d

(
Ak, Ao

))]pk ≤ [
f

(
d

(
Ak, Ao

))]h
< ε < 1,

then we obtain

lim
k

[
f

(
d

(
Ak, Ao

))]pk = 0.

As (k−s) is bounded, we can write

lim
k

k−s
[
f

(
d

(
Ak, Ao

))]pk = 0.

Therefore
(
Ak

) ∈ c (f, p, s) .

b) Let
(
Ak

) ∈ c (p, s) , then limk k−s
(
d

(
Ak, Ao

))pk = 0. Let ε > 0 and choose δ with 0 < δ < 1, such that
f (t) < ε for 0 ≤ t ≤ δ. Now we write

Iı =
{
k ∈ N : d

(
Ak, Ao

) ≤ δ
}

and

I2 =
{
k ∈ N : d

(
Ak, Ao

)
> δ

}
.

For d
(
Ak, Ao

)
> δ

d
(
Ak, Ao

)
< d

(
Ak, Ao

)
δ−1 < 1 +

[∣∣d (
Ak, Ao

)∣∣]

where k ∈ I2 and [|t|] denotes the integer of t. By using properties of modulus function, for d
(
Ak, Ao

)
> δ, we have

f
[
d

(
Ak, Ao

)]
< 1 +

[∣∣d (
Ak, Ao

)∣∣] f (1) ≤ 2f (1) d
(
Ak, Ao

)
δ−1.
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For d
(
Ak, Ao

) ≤ δ, f
[
d

(
Ak, Ao

)]
< ε, where k ∈ I1. Hence

k−s
[
f

(
d

(
Ak, Ao

))]pk = k−s
[
f

(
d

(
Ak, Ao

))]pkck∈I1 + k−s
[
f

(
d

(
Ak, Ao

))]pkck∈I2

≤ k−sεH +
[
2f (1) δ−1

]H
k−s

[
f

(
d

(
Ak, Ao

))]pk → 0 as k →∞.

Then we obtain
(
Ak

) ∈ c (f, p, s) .
c) In (b), it was shown that c (p, s) ⊂ c (f, p, s) . We must show that c (f, p, s) ⊂ c (p, s) . For any modulus

function, the existence of positive limit given by β in Maddox[16, Proposition 1]. Now, β > 0 and let
(
Ak

) ∈
c (f, p, s) . As β > 0 for every t > 0, we write f(t) ≥ βt. From this inequality, it is easy seen that

(
Ak

) ∈ c (p, s) .

Theorem 2.5 Let f and g be two modulus functions and s, s1, s2 ≥ 0. Then
a) c (f, p, s) ∩ c (g, p, s) ⊂ c (f + g, p, s) ,
b) s1 ≤ s2 implies c (f, p, s1) ⊂ c (f, p, s2) .

Proof. a) Let
(
Ak

) ∈ c (f, p, s) ∩ c (g, p, s) . From (1), we have
[
(f + g)

(
d

(
Ak, Ao

))]pk =
[
f

(
d

(
Ak, Ao

))
+ g

(
d

(
Ak, Ao

))]pk

≤ C
[
f

(
d

(
Ak, Ao

))]pk + C
[
g

(
d

(
Ak, Ao

))]pk
.

As (k−s) is bounded, we can write

k−s
[
(f + g)

(
d

(
Ak, Ao

))]pk

≤ Ck−s
[
f

(
d

(
Ak, Ao

))]pk + Ck−s
[
g

(
d

(
Ak, Ao

))]pk
.

Hence we obtain
(
Ak

) ∈ c (f + g, p, s) .
b) Let s1 ≤ s2. Then k−s2 ≤ k−s1 for all k ∈ N. Hence

k−s2
[
f

(
d

(
Ak, Ao

))]pk ≤ k−s1
[
f

(
d

(
Ak, Ao

))]pk
.

This inequality implies that c (f, p, s1) ⊂ c (f, p, s2) .

Theorem 2.6 Let f be a modulus function, then
a) l∞ ⊂ l∞ (f, p, s) ,
b) If f is bounded then l∞ (f, p, s) = w.

Proof. a) Let
(
Ak

) ∈ l∞. Then there exists a positive integer M such that d
(
Ak, 0

) ≤ M. Since f is bounded then
f

[
d

(
Ak, 0

)]
is also bounded. Hence

k−s
[
f

(
d

(
Ak, 0

))]pk ≤ k−s [Mf(1)]pk ≤ k−s [Mf(1)]H < ∞.

Therefore
(
Ak

) ∈ l∞ (f, p, s) .

b) If f is bounded, then for any
(
Ak

) ∈ w,

k−s
[
f

(
d

(
Ak, 0

))]pk ≤ k−sLpk ≤ k−sLH < ∞.

Hence l∞ (f, p, s) = w.
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