Global Journal of Mathematical Analysis, 2 (2) (2014) 28-43 © Science Publishing Corporation

On paranorm $B V_{\sigma}$ I-convergent sequence spaces defined by an Orlicz function

Vakeel.A.Khan ${ }^{1 *}$,Ayhan Esi ${ }^{2}$, Mohd Shafiq ${ }^{1}$
${ }^{1}$ Department of Mathematics Aligarh Muslim University, Aligarh-202002(INDIA)
${ }^{2}$ Adiyaman University Science and Art Faculty Department of Mathematics 02040, Adiyaman, Turkey
*Corresponding author E-mail : vakhanmaths@gmail.com

Abstract

In this article we introduce and study ${ }_{0} B V_{\sigma}^{I}(M, p), B V_{\sigma}^{I}(M, p)$ and $\infty B V_{\sigma}^{I}(M, p)$ sequence spaces where $p=\left(p_{k}\right)$ is the sequence of strictly positive real numbers with the help of $B V_{\sigma}$ space [see [23]] and an Orlicz function M. We study some topological and algebraic properties and decompostion theorem. Further we prove some inclusion relations related to these new spaces.

Keywords: Bounded variation, Invariant mean, σ-Bounded variation, Ideal, Filter, Orlicz function, I-convergence, I-null, Solid space, Sequence algebra, paranorm.

1. Introduction

Let \mathbb{N}, \mathbb{R} and \mathbb{C} be the sets of all natural, real and complex numbers respectively.
We denote

$$
\omega=\left\{x=\left(x_{k}\right): x_{k} \in \mathbb{R} \text { or } \mathbb{C}\right\}
$$

the space of all real or complex sequences.
Let ℓ_{∞}, c and c_{0} denote the Banach spaces of bounded, convergent and null sequences respectively with norm

$$
\|x\|=\sup _{k}\left|x_{k}\right|
$$

Let v denote the space of sequences of bounded variation. That is,

$$
\begin{equation*}
v=\left\{x=\left(x_{k}\right): \sum_{k=o}^{\infty}\left|x_{k}-x_{k-1}\right|<\infty=0\right\} \tag{1.1}
\end{equation*}
$$

v is a Banach Space normed by

$$
\|x\|=\sum_{k=0}^{\infty}\left|x_{k}-x_{k-1}\right| \quad(s e e[23])
$$

Let σ be a mapping of the set of the positive integers into itself having no finite orbits. A continuous linear functional ϕ on ℓ_{∞} is said to be an invariant mean or σ-mean if and only if
(i) $\phi(x) \geq 0$ where the sequence $x=\left(x_{k}\right)$ has $x_{k} \geq 0$ for all k .
(ii) $\phi(e)=1$ where $e=\{1,1,1, \ldots\}$,
(iii) $\phi\left(x_{\sigma(n)}\right)=\phi(x)$ for all $x \in \ell_{\infty}$

If $x=\left(x_{k}\right)$, write $T x=\left(T x_{k}\right)=\left(x_{\sigma(k)}\right)$. It can be shown that

$$
\begin{equation*}
V_{\sigma}=\left\{x=\left(x_{k}\right): \lim _{m \rightarrow \infty} t_{m, k}(x)=L \text { uniformly in } \mathrm{k}, L=\sigma-\lim x\right\} \tag{1.2}
\end{equation*}
$$

where $m \geq 0, k>0$.

$$
\begin{equation*}
t_{m, k}(x)=\frac{x_{k}+x_{\sigma(k)} \ldots+x_{\sigma^{m}(k)}}{m+1} \text { and } t_{-1, k}=0 \tag{1.3}
\end{equation*}
$$

where $\sigma_{m}(k)$ denote the m -th iterate of $\sigma(k)$ at k . In case σ is the translation mapping, that is, $\sigma(\mathrm{k})=\mathrm{k}+1, \sigma$-mean is called a Banach limit(see, [2]) and V_{σ}, the set of bounded sequences of all whose invariant means are equal, is the set of almost convergent sequences. The special case of (1.2) in which $\sigma(\mathrm{n})=\mathrm{n}+1$ was given by Lorentz $[19$, Theorem $1]$, and that the general result can be proved in a similar way. It is familiar that a Banach limit extends the limit functional on c (see,[19]) in the sense that

$$
\begin{equation*}
\phi(x)=\lim x, \text { for all } x \in c \tag{1.4}
\end{equation*}
$$

Remark 1.1. In view of above discussion we have $c \subset V_{\sigma}$.
Theorem 1.2. [23,Theorem 1.1] A σ-mean extends the limit functional on c in the sense that $\phi(x)=\lim x$ for all $x \in c$ if and only if σ has no finite orbits. That is, if and only if for all $k \geq 0, j \geq 1, \sigma^{j}(k) \neq k$ Put

$$
\begin{equation*}
\phi_{m, k}(x)=t_{m, k}(x)-t_{m-1, k}(x) \tag{1.5}
\end{equation*}
$$

assuming that $t_{-1, k}=0$
A straight forward calculation shows that (see[22])

$$
\phi_{m, k}(x)=\left\{\begin{array}{lr}
\frac{1}{m(m+1)} \sum_{j=1}^{m} j\left(x_{\sigma}^{j}(k)-x_{\sigma}^{j-1}(k)\right), & \operatorname{if}(m \geq 1) \tag{1.6}\\
x_{k} & \operatorname{if}(m=0)
\end{array}\right.
$$

For any sequence x, y and scalar λ, we have

$$
\phi_{m, k}(x+y)=\phi_{m, k}(x)+\phi_{m, k}(y)
$$

and

$$
\phi_{m, k}(\lambda x)=\lambda \phi_{m, k}(x)
$$

Definition 1.3. A sequence $x \in \ell_{\infty}$ is of σ-bounded variation if and only if
(i) $\sum_{m=0}^{\infty}\left|\phi_{m, k}(x)\right|$ converges uniformly in k .
(ii) $\lim _{m \rightarrow \infty} t_{m, k}(x)$, which must exist, should take the same value for all k .

Subsequently invariant means have been studied by Ahmad and Mursaleen [23,1,22], J.P.King [14],Raimi [26], Khan and Ebadullah [12,13] and many others. Mursaleen [23] defined the sequence space $B V_{\sigma}$, the space of all sequence of σ-bounded variation as

$$
B V_{\sigma}=\left\{x \in \ell_{\infty}: \sum_{m}\left|\phi_{m, k}(x)\right|<\infty, \text { uniformly in } \mathrm{k}\right\}
$$

Theorem 1.4. $B V_{\sigma}$ is a Banach space normed by

$$
\|x\|=\sup _{k} \sum\left|\phi_{m, k}(x)\right| \quad(c . f .[23],[26],[29],[22])
$$

Definition 1.5. A function $M:[0, \infty) \rightarrow[0, \infty)$ is said to be an Orlicz function if it satisfies the following conditions
(i) M is continuous, convex and non-decreasing
(ii) $M(0)=0, M(x)>0$ and $M(x) \rightarrow \infty$ as $x \rightarrow \infty$

Remark 1.6. If the convexity of an Orlicz function is replaced by $M(x+y) \leq M(x)+M(y)$, then this function is called modulus function.

Remark 1.7. If M is an Orlicz function, then $M(\lambda x) \leq \lambda M(x)$ for all λ with $0<\lambda<1$.
An Orlicz function M is said to satisfy Δ_{2} - Condition for all values of u if there exists a constant $K>0$ such that $M(L u) \leq \operatorname{KL} M(u)$ for all values of $L>1$.

Lindenstrauss and Tzafriri[18] used the idea of an Orlicz function to construct the sequence space

$$
\begin{equation*}
\ell_{M}=\left\{x \in \omega: \sum_{k=1}^{\infty} M\left(\frac{\left|x_{k}\right|}{\rho}\right)<\infty, \text { for some } \rho>0\right\} \tag{1.7}
\end{equation*}
$$

The space ℓ_{M} becomes a Banach space with the norm

$$
\begin{equation*}
\|x\|=\inf \left\{\rho>0: \sum_{k=1}^{\infty} M\left(\frac{\left|x_{k}\right|}{\rho}\right) \leq 1\right\} \tag{1.8}
\end{equation*}
$$

which is called an Orlicz sequence space. The space ℓ_{M} is closely related to the space ℓ_{p} which is an Orlicz sequence space with $M(t)=t^{P}$ for $1<p<\infty$.

Later on some Orlicz sequence spaces were investigated by Parashar and Choudhury [25], Maddox [20],Khan [10], Kamthan and Gupta [9],Bhardwaj and Singh [3], and many others.

Definition 1.8. Let X be a linear space. A function $g: X \longrightarrow R$ is called paranorm, if for all $x, y \in X$,
(PI) $g(x)=0$ if $x=\theta$,
(P2) $g(-x)=g(x)$,
(P3) $g(x+y) \leq g(x)+g(y)$,
(P4) If $\left(\lambda_{n}\right)$ is a sequence of scalars with $\lambda_{n} \rightarrow \lambda(n \rightarrow \infty)$ and $x_{n}, a \in X$ with $x_{n} \rightarrow a \quad(n \rightarrow \infty)$ in the sense that $g\left(x_{n}-a\right) \rightarrow 0 \quad(n \rightarrow \infty)$, then $g\left(\lambda_{n} x_{n}-\lambda a\right) \rightarrow 0 \quad(n \rightarrow \infty)$.

The concept of paranorm is closely related to linear metric spaces. It is a generalization of that of absolute value(see,[21]). The notion of paranormed sequence space was studied at the initial stage by Nakano[24]. Later on, it was further investigated by Maddox[20,21], Lascarides[17], Tripathy[30] and many others. A paranorm g for which $g(x)=0$ implies $x=\theta$ is called a total paranorm on X, and the pair (X, g) is called a totally paranormed space.

Initially, as a generalization of statistical convergence[6,7], the notation of ideal convergence (I-convergence) was introduced and studied by Kostyrko, Mačaj, Salǎt and Wilczyńki ([15,16]). Later on, it was studied by Šalát and Tripathy [30], Hazarika [8,32], Khan and Ebadullah [11,12,13],Demirci [4] and many others.

Here we give some important definitions.

Definition 1.9. A sequence $\mathrm{x}=\left(x_{k}\right) \in \omega$ is said to be statistically convergent to a limit $L \in \mathbb{C}$ if for every $\epsilon>0$, we have

$$
\lim _{k} \frac{1}{k}\left|\left\{n \in \mathbb{N}:\left|x_{k}-L\right| \geq \epsilon, n \leq k\right\}\right|=0
$$

where vertical lines denote the cardinality of the enclosed set.
Definition 1.10. Let N be a non empty set. Then a family of sets $I \subseteq 2^{N}$ (power set of N) is said to be an ideal if

1) I is additive i.e $\forall A, B \in I \Rightarrow A \cup B \in I$
2) I is hereditary i.e $\forall A \in I$ and $B \subseteq A \Rightarrow B \in I$.

Definition 1.11. A non-empty family of sets $£(I) \subseteq 2^{N}$ is said to be filter on N if and only if

1) $\Phi \notin £(\mathrm{I})$,
2) $\forall A, B \in £(\mathrm{I})$ we have $A \cap B \in £(I)$,
3) $\forall A \in £(\mathrm{I})$ and $A \subseteq B \Rightarrow B \in £(I)$.

Definition 1.12. An Ideal $I \subseteq 2^{N}$ is called non-trivial if $I \neq 2^{N}$.
Definition 1.13. A non-trivial ideal $I \subseteq 2^{N}$ is called admissible if $\{\{x\}: x \in N\} \subseteq I$.
Definition 1.14. A non-trivial ideal I is maximal if there cannot exist any non-trivial ideal $J \neq I$ containing I as a subset.

Remark 1.15. For each ideal I, there is a filter $£(I)$ corresponding to I. i.e $£(I)=\left\{K \subseteq N: K^{c} \in I\right\}$, where $K^{c}=N \backslash K$.

Definition 1.16. A sequence $x=\left(x_{k}\right) \in \omega$ is said to be I-convergent to a number L if for every $\epsilon>0$, the set $\left\{k \in N:\left|x_{k}-L\right| \geq \epsilon\right\} \in I$.
In this case, we write $I-\lim x_{k}=L$.

Definition 1.17. A sequence $x=\left(x_{k}\right) \in \omega$ is said to be I-null if $L=0$. In this case, we write $I-\lim x_{k}=0$.
Definition 1.18. A sequence $x=\left(x_{k}\right) \in \omega$ is said to be I-cauchy if for every $\epsilon>0$ there exists a number $m=m(\epsilon)$ such that $\left\{k \in N:\left|x_{k}-x_{m}\right| \geq \epsilon\right\} \in I$.

Definition 1.19. A sequence $x=\left(x_{k}\right) \in \omega$ is said to be I-bounded if there exists some $M>0$ such that $\left\{k \in N:\left|x_{k}\right| \geq M\right\} \in I$.

Definition 1.20. A sequence space E said to be solid(normal) if $\left(\alpha_{k} x_{k}\right) \in E$ whenever $\left(x_{k}\right) \in E$ and for any sequence $\left(\alpha_{k}\right)$ of scalars with $\left|\alpha_{k}\right| \leq 1$, for all $k \in \mathbb{N}$.

Definition 1.21. A sequence space E said to be symmetric if $\left(x_{\pi(k)}\right) \in E$ whenever $x_{k} \in E$. where π is a permutation on \mathbb{N}

Definition 1.22. A sequence space E said to be sequence algebra if $\left(x_{k}\right) *\left(y_{k}\right)=\left(x_{k} \cdot y_{k}\right) \in E$ whenever $\left(x_{k}\right),\left(y_{k}\right) \in E$.

Definition 1.23. A sequence space E said to be convergence free if $\left(y_{k}\right) \in E$ whenever $\left(x_{k}\right) \in E$ and $x_{k}=0$ implies $y_{k}=0$, for all k .

Definition 1.24. Let $K=\left\{k_{1}<k_{2}<k_{3}<k_{4}<k_{5} \ldots\right\} \subset \mathbb{N}$ and E be a Sequence space.A K-step space of E is a sequence space $\lambda_{K}^{E}=\left\{\left(x_{k_{n}}\right) \in \omega:\left(x_{k}\right) \in E\right\}$.

Definition 1.25. A canonical pre-image of a sequence $\left(x_{k_{n}}\right) \in \lambda_{K}^{E}$ is a sequence $\left(y_{k}\right) \in \omega$ defined by

$$
y_{k}=\left\{\begin{aligned}
x_{k}, & \text { if } k \in K \\
0, & \text { otherwise }
\end{aligned}\right.
$$

A canonical preimage of a step space λ_{K}^{E} is a set of preimages all elements in λ_{K}^{E}.i.e. y is in the canonical preimage of λ_{K}^{E} iff y is the canonical preimage of some $x \in \lambda_{K}^{E}$.

Definition 1.26. A sequence space E is said to be monotone if it contains the canonical preimages of its step space.
Definition 1.27. If $I=I_{f}$, the class of all finite subsets of N. Then, I is an admissible ideal in N and I_{f} convergence coincides with the usual convergence.

Definition 1.28. If $I=I_{\delta}=\{A \subseteq N: \delta(A)=0\}$. Then, I is an admissible ideal in N and we call the $I_{\delta^{-}}$ convergence as the logarithmic statistical convergence.

Definition 1.29. If $I=I_{d}=\{A \subseteq N: d(A)=0\}$. Then, I is an admissible ideal in N and we call the $I_{d^{-}}$ convergence as the asymptotic statistical convergence.

Remark 1.30. If $I_{\delta}-\lim x_{n}=l$, then $I_{d}-\lim x_{n}=l$
The following lemmas remained an important tool for the establishment of some results of this article.

Lemma(I). Every solid space is monotone
Lemma(II). Let $K \in £(I)$ and $M \subseteq N$. If $M \notin I$, then $M \cap K \notin I$.
Lemma(III). If $I \subseteq 2^{N}$ and $M \subseteq N$. If $M \notin I$, then $M \cap N \notin I$.
Khan and K.Ebadullah[18] introduced and studied the following sequence space.
For $m \geq 0$
Khan and K.Ebadullah[18] introduced and studied the following sequence space.
For $m \geq 0$

$$
\begin{equation*}
B V_{\sigma}^{I}=\left\{x=\left(x_{k}\right) \in \omega:\left\{k \in \mathbb{N}:\left|\phi_{m \cdot k}(x)-L\right| \geq \epsilon\right\} \in I, \quad \text { for some } \mathrm{L} \in \mathbb{C}\right\} \tag{2.1}
\end{equation*}
$$

2. Main results

In this article we introduce the following classes of sequence spaces :

For $m \geq 0$

$$
\begin{gather*}
B V_{\sigma}^{I}(M, p)=\left\{x=\left(x_{k}\right) \in \omega:\left\{k \in \mathbb{N}: M\left(\frac{\left|\phi_{m, k}(x)-L\right|}{\rho}\right)^{p_{k}} \geq \epsilon\right\} \in I ; \quad \text { for some } \mathrm{L} \in \mathbb{C}, \rho>0\right\} ; \tag{2.2}\\
{ }_{\circ} B V_{\sigma}^{I}(M, p)=\left\{x=\left(x_{k}\right) \in \omega:\left\{k \in \mathbb{N}: M\left(\frac{\left|\phi_{m, k}(x)\right|}{\rho}\right)^{p_{k}} \geq \epsilon\right\} \in I, \text { for some } \rho>0\right\} ; \tag{2.3}\\
\ell_{\infty}(M, p)=\left\{x=\left(x_{k}\right) \in \omega: \sup _{k} M\left(\frac{\left|\phi_{m, k}(x)\right|}{\rho}\right)^{p_{k}}<\infty, \text { for some } \rho>0\right\} ; \tag{2.4}\\
{ }_{\infty} B V_{\sigma}^{I}(M, p)=\left\{x=\left(x_{k}\right) \in \omega:\left\{k \in \mathbb{N}: \exists K>0, M\left(\frac{\left|\phi_{m, k}(x)\right|}{\rho}\right)^{p_{k}} \geq K\right\} \in I, \text { for some } \rho>0\right\} . \tag{2.5}
\end{gather*}
$$

We also denote

$$
\mathcal{M}_{B V_{\sigma}}^{I}(M, p)=B V_{\sigma}^{I}(M, p) \cap \ell_{\infty}(M, p)
$$

and

$$
{ }_{0} \mathcal{M}_{B V_{\sigma}}^{I}(M, p)={ }_{0} B V_{\sigma}^{I}(M, p) \cap \ell_{\infty}(M, p)
$$

Throughout the article, if required, we denote
$\phi_{m, k}(x)=x^{\prime}, \phi_{m, k}(\mathbf{y})=y^{\prime}$ and $\phi_{m, k}(\mathbf{z})=z^{\prime}$ where x, y, z are $\left(x_{k}\right),\left(y_{k}\right)$ and $\left(z_{k}\right)$ respectively.
Theorem 2.1.Let $p=\left(p_{k}\right) \in l_{\infty}$. For an Orlicz function M, the classes of sequence ${ }_{0} B V_{\sigma}^{I}(M, p), B V_{\sigma}^{I}(M, p)$, ${ }_{0} \mathcal{M}_{B V_{\sigma}}^{I}(M, p)$ and $\mathcal{M}_{B V_{\sigma}}^{I}(M, p)$ are the linear spaces.
Proof. We shall prove the result for the space $B V_{\sigma}^{I}(M, p)$. Rests will follow similarly.
For, let $x=\left(x_{k}\right), y=\left(y_{k}\right) \in B V_{\sigma}^{I}(M, p)$ be any two arbitrary elements and let α, β are scalars.
Now,since
$x=\left(x_{k}\right), y=\left(y_{k}\right) \in B V_{\sigma}^{I}(M, p) . \Rightarrow$ For $\epsilon>0, \exists$ some + ve numbers ρ_{1} and ρ_{2} such that the sets

$$
\begin{equation*}
A_{1}=\left\{k \in \mathbb{N}: M\left(\frac{\left|x_{k}^{\prime}-L_{1}\right|}{\rho_{1}}\right)^{p_{k}} \geq \frac{\epsilon}{2}\right\} \in I, \text { for some } L_{1} \in \mathbb{C} \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
A_{2}=\left\{k \in \mathbb{N}: M\left(\frac{\left|y_{k}^{\prime}-L_{2}\right|}{\rho_{1}}\right)^{p_{k}} \geq \frac{\epsilon}{2}\right\} \in I, \text { for some } L_{2} \in \mathbb{C} \tag{2.7}
\end{equation*}
$$

Let

$$
\begin{equation*}
\rho_{3}=\max \left\{2|\alpha| \rho_{1}, 2|\beta| \rho_{2}\right\} \tag{2.8}
\end{equation*}
$$

Since, M is non-decreasing and convex, we have,

$$
\begin{align*}
M\left(\frac{\left|\left(\alpha x_{k}^{\prime}+\beta y_{k}^{\prime}\right)-\left(\alpha L_{1}+\beta L_{2}\right)\right|}{\rho_{3}}\right)^{p_{k}} & \leq M\left(\frac{|\alpha|\left|x_{k}^{\prime}-L_{1}\right|}{\rho_{3}}\right)^{p_{k}}+M\left(\frac{|\beta|\left|y_{k}^{\prime}-L_{2}\right|}{\rho_{3}}\right)^{p_{k}} \\
& \leq M\left(\frac{\left|x_{k}^{\prime}-L_{1}\right|}{\rho_{1}}\right)^{p_{k}}+M\left(\frac{\left|y_{k}^{\prime}-L_{2}\right|}{\rho_{2}}\right)^{p_{k}} \tag{2.9}
\end{align*}
$$

Therefore, from (2.6), (2.7) and (2.9), we have

$$
\left\{k \in \mathbb{N}: M\left(\frac{\left|\left(\alpha x_{k}^{\prime}+\beta y_{k}^{\prime}\right)-\left(\alpha L_{1}+\beta L_{2}\right)\right|}{\rho_{3}}\right)^{p_{k}} \geq \epsilon\right\} \subseteq A_{1} \cup A_{2} \in I
$$

implies that

$$
\left\{k \in \mathbb{N}: M\left(\frac{\left|\left(\alpha x_{k}^{\prime}+\beta y_{k}^{\prime}\right)-\left(\alpha L_{1}+\beta L_{2}\right)\right|}{\rho_{3}}\right)^{p_{k}} \geq \epsilon\right\} \in I
$$

Therefore, $\alpha\left(x_{k}\right)+\beta\left(y_{k}\right) \in B V_{\sigma}^{I}(M, p)$
But $x=\left(x_{k}\right), y=\left(y_{k}\right) \in B V_{\sigma}^{I}(M, p)$ are the arbitrary elements
Therefore, $\alpha x_{k}+\beta y_{k} \in B V_{\sigma}^{I}(M)$, for all $x=\left(x_{k}\right), y=\left(y_{k}\right) \in B V_{\sigma}^{I}(M, p)$ and for all scalars α, β
Hence, $B V_{\sigma}^{I}(M, p)$ is linear
Theorem 2.2. Let $p=\left(p_{k}\right) \in l_{\infty}$. For an Orlicz function M, the spaces $\mathcal{M}_{B V_{\sigma}}^{I}(M, p)$ and ${ }_{0} \mathcal{M}_{B V_{\sigma}}^{I}(M, p)$ are paranormed spaces, paranormed by

$$
g(x)=\inf _{k \geq 1}\left\{\rho^{\frac{p_{k}}{H}}: \sup _{k} M\left(\frac{\left|\phi_{m, k}(x)\right|}{\rho}\right)^{p_{k}} \leq 1, \text { for some } \rho>0\right\}
$$

where $H=\max \left\{1, \sup _{k} p_{k}\right\}$.
Proof. (PI) Clearly $g(x)=0$ if $x=\theta$,
(P2) It is obvious that $g(-x)=g(x)$,
(P3) Let $x=\left(x_{k}\right)$ and $y=\left(y_{k}\right)$ be two elements in $\mathcal{M}_{B V_{\sigma}}^{I}(M, p)$. Now for $\rho_{1}, \rho_{2}>0$, we denote

$$
\begin{equation*}
A_{1}=\left\{\rho_{1}: \sup _{k} M\left(\frac{\left|\phi_{m, k}(x)\right|}{\rho}\right)^{p_{k}} \leq 1\right\} \tag{2.10}
\end{equation*}
$$

and

$$
\begin{equation*}
A_{2}=\left\{\rho_{2}: \sup _{k} M\left(\frac{\left|\phi_{m, k}(x)\right|}{\rho}\right)^{p_{k}} \leq 1\right\} \tag{2.11}
\end{equation*}
$$

Let us take $\rho=\rho_{1}+\rho_{2}$. Then by using the convexity of M, we have

$$
M\left(\frac{\left|\phi_{m, k}(x+y)\right|}{\rho}\right) \leq \frac{\rho_{1}}{\rho_{1}+\rho_{2}} M\left(\frac{\left|\phi_{m, k}(x)\right|}{\rho_{1}}\right)+\frac{\rho_{2}}{\rho_{1}+\rho_{2}} M\left(\frac{\left|\phi_{m, k}(y)\right|}{\rho_{2}}\right)
$$

which in terms give us

$$
\sup _{k} M\left(\frac{\left|\phi_{m, k}(x+y)\right|}{\rho}\right)^{p_{k}} \leq 1
$$

and

$$
\begin{aligned}
g(x+y) & =\inf \left\{\left(\rho_{1}+\rho_{2}\right)^{\frac{p_{k}}{H}}: \rho_{1} \in A_{1}, \rho_{2} \in A_{2}\right\} \\
& \leq \inf \left\{\left(\rho_{1}\right)^{\frac{p_{k}}{H}}: \rho_{1} \in A_{1}\right\}+\inf \left\{\left(\rho_{1}\right)^{\frac{p_{k}}{H}}: \rho_{1} \in A_{1}\right\} \\
& =g(x)+g(y)
\end{aligned}
$$

(P4) Let $\left(\lambda_{k}\right)$ be a sequence of scalars with $\lambda_{k} \rightarrow L$ where $\lambda_{k}, L \in \mathbb{C}$ and let $\left(x_{k}\right), x \in \mathcal{M}_{B V_{\sigma}}^{I}(M, p)$ be such that $g\left(x_{k}-x\right) \rightarrow 0$ as $k \rightarrow \infty$. To prove that $g\left(\lambda_{k} x_{k}-L x\right) \rightarrow 0$ as $k \rightarrow \infty$.
We put

$$
\begin{equation*}
A_{3}=\left\{\rho_{r}>0: \sup _{k} M\left(\frac{\left|\phi_{m, k}\left(x_{k}\right)\right|}{\rho_{r}}\right)^{p_{k}} \leq 1\right\} \tag{2.12}
\end{equation*}
$$

and

$$
\begin{equation*}
A_{4}=\left\{\rho_{s}>0: \sup _{k} M\left(\frac{\left|\phi_{m, k}\left(x_{k}-x\right)\right|}{\rho_{s}}\right)^{p_{k}} \leq 1\right\} \tag{2.13}
\end{equation*}
$$

By convexity and continuity of M, we observe that

$$
\begin{aligned}
M\left(\frac{\left|\phi_{m, k}\left(\lambda_{k} x_{k}-L x\right)\right|}{\left|\lambda_{k}-L\right|_{\rho_{r}}+|L|_{\rho_{s}}}\right. & \leq M\left(\frac{\left|\phi_{m, k}\left(\lambda_{k} x_{k}-L x_{k}\right)\right|}{\left|\lambda_{k}-L\right|_{\rho_{r}}+|L|_{\rho_{s}}}\right)+M\left(\frac{\left|\phi_{m, k}\left(L x_{k}-L x\right)\right|}{\left|\lambda_{k}-L\right|_{\rho_{r}}+|L|_{\rho_{s}}}\right) \\
& \leq \frac{\left|\lambda_{k}-L\right|_{\rho_{r}}}{\left|\lambda_{k}-L\right|_{\rho_{r}}+|L|_{\rho_{s}}} M\left(\frac{\mid \phi_{m, k}\left(x_{k}\right)}{\rho_{r}}\right)+\frac{|L|_{\rho_{s}}}{\left|\lambda_{k}-L\right|_{\rho_{r}}+|L|_{\rho_{s}}} M\left(\frac{\left|\phi_{m, k}\left(x_{k}-x\right)\right|}{\rho_{r}}\right)
\end{aligned}
$$

From the above inequality, it follows that

$$
\sup _{k} M\left(\frac{\left|\phi_{m, k}\left(\lambda_{k} x_{k}-L x\right)\right|}{\left|\lambda_{k}-L\right|_{\rho_{r}}+|L|_{\rho_{s}}}\right)^{p_{k}} \leq 1
$$

and consequently, we have

$$
\begin{align*}
& g\left(\lambda_{k} x_{k}-L x\right)= \inf \left\{\left(\left|\lambda_{k}-L\right|_{\rho_{r}}+|L|_{\rho_{s}}\right)^{\frac{p_{k}}{H}}: \rho_{r} \in A_{3}, \rho_{s} \in A_{4}\right\} \\
& \leq\left|\lambda_{k}-L\right|^{\frac{p_{k}}{H}} \inf \left\{\left(\rho_{r}\right) \frac{p_{k}}{H}: \rho_{r} \in A_{3}\right\}+|L|^{\frac{p_{k}}{H}} \inf \left\{\left(\rho_{s}\right) \frac{p_{k}}{H}: \rho_{r} \in A_{4}\right\} \\
& \leq \max \left\{1,\left|\lambda_{k}-L\right|^{\frac{p_{k}}{H}}\right\} g\left(x_{k}\right)+\max \left\{1,|L|^{\frac{p_{k}}{H}}\right\} g\left(x_{k}-x\right) \tag{2.14}
\end{align*}
$$

Notice that $g\left(x_{k}\right) \leq g(x)+g\left(x_{k}-x\right)$ for all $k \in \mathbb{N}$. Hence by our assumption, the right hand side of (2.14) tends
to 0 as $k \rightarrow \infty$ and the result follows.
For ${ }_{0} \mathcal{M}_{B V_{\sigma}}^{I}(M, p)$, the result is similar and hence omitted.
Theorem 2.3 Let M_{1} and M_{2} be two Orlicz functions and satisfying Δ_{2} - Condition, then
(a) $\mathcal{X}\left(M_{2}, p\right) \subseteq \mathcal{X}\left(M_{1} M_{2}, p\right)$
(b) $\mathcal{X}\left(M_{1}, p\right) \cap\left(M_{2}, p\right) \subseteq \mathcal{X}\left(M_{1}+M_{2}, p\right)$
where $\mathcal{X}={ }_{0} B V_{\sigma}^{I}, B V_{\sigma}^{I},{ }_{0} \mathcal{M}_{B V_{\sigma}}^{I}, \mathcal{M}_{B V_{\sigma}}^{I}$.
Proof. (a). Let $x=\left(x_{k}\right) \in{ }_{0} B V_{\sigma}^{I}\left(M_{2}\right)$ be any arbitrary element. Let $\epsilon>0$ be given $\Rightarrow \exists \rho>0$ such that

$$
\left\{k \in \mathbb{N}: M_{2}\left(\frac{\left|\phi_{m, k}(x)\right|}{\rho}\right)^{p_{k}} \geq \epsilon\right\} \in I
$$

i.e.

$$
\begin{equation*}
\left\{k \in \mathbb{N}: M_{2}\left(\frac{\left|x_{k}^{\prime}\right|}{\rho}\right)^{p_{k}} \geq \epsilon\right\} \in I \tag{2.15}
\end{equation*}
$$

Let $\epsilon>0$ and choose δ with $0<\delta<1$ such that $M_{1}(t)<\epsilon$, for $0 \leq t \leq \delta$.
Let us write
$y_{k}=M_{2}\left(\frac{\left|x_{k}^{\prime}\right|}{\rho}\right)^{p_{k}}$
and consider

$$
\lim _{k} M_{1}\left(y_{k}\right)=\lim _{y_{k} \leq \delta, k \in \mathbb{N}} M_{1}\left(y_{k}\right)+\lim _{y_{k}>\delta, k \in \mathbb{N}} M_{1}\left(y_{k}\right)
$$

Now, since M_{1} is an Orlicz function, we have
$M_{1}(\lambda x) \leq \lambda M_{1}(x)$ for all λ with $0<\lambda<1$.
Therefore, $\lim _{y_{k} \leq \delta, k \in \mathbb{N}} M_{1}\left(y_{k}\right) \leq M_{1}(2) \lim _{y_{k} \leq \delta, k \in \mathbb{N}}\left(y_{k}\right)$

For $y_{k}>\delta$, we have $y_{k}<\frac{y_{k}}{\delta}<1+\frac{y_{k}}{\delta}$
Now, since M_{1} is non-decreasing and convex, it follows that

$$
M_{1}\left(y_{k}\right)<M_{1}\left(1+\frac{y_{k}}{\delta}\right)<\frac{1}{2} M_{1}(2)+\frac{1}{2} M_{1}\left(\frac{2 y_{k}}{\delta}\right)
$$

Again, since M_{1} satisfies Δ_{2} - Condition, we have

$$
M_{1}\left(y_{k}\right)<\frac{1}{2} K \frac{\left(y_{k}\right)}{\delta} M_{1}(2)+\frac{1}{2} K \frac{\left(y_{k}\right)}{\delta} M_{1}(2) .
$$

Thus,

$$
M_{1}\left(y_{k}\right)<K \frac{\left(y_{k}\right)}{\delta} M_{1}(2)
$$

Hence,

$$
\begin{equation*}
\lim _{y_{k}>\delta, k \in \mathbb{N}} M_{1}\left(y_{k}\right) \leq \max \left\{1, K \delta^{-1} M_{1}(2) \lim _{y_{k}>\delta, k \in \mathbb{N}}\left(y_{k}\right) .\right. \tag{2.17}
\end{equation*}
$$

Therefore, from (2.15), (2.16) and (2.17), it follows that

$$
\left\{k \in \mathbb{N}: M_{1} M_{2}\left(\frac{\left|\phi_{m, k}(x)\right|}{\rho}\right)^{p_{k}} \geq \epsilon\right\} \in I
$$

implies that $x=\left(x_{k}\right) \in{ }_{0} B V_{\sigma}^{I}\left(M_{1} M_{2}, p\right)$
Therefore, ${ }_{0} B V_{\sigma}^{I}\left(M_{2}, p\right) \subseteq{ }_{0} B V_{\sigma}^{I}\left(M_{1} M_{2}, p\right)$. Hence, $\mathcal{X}\left(M_{2}, p\right) \subseteq \mathcal{X}\left(M_{1} M_{2}, p\right)$ for $\mathcal{X}={ }_{0} B V_{\sigma}^{I}$
For $\mathcal{X}=B V_{\sigma}^{I}, \mathcal{X}={ }_{0} \mathcal{M}_{B V_{\sigma}}^{I}$ and $\mathcal{X}=\mathcal{M}_{B V_{\sigma}}^{I}$ the inclusions can be established similarly.
(b). Let $x=\left(x_{k}\right) \in{ }_{0} B V_{\sigma}^{I}\left(M_{1}, p\right) \cap{ }_{0} B V_{\sigma}^{I}\left(M_{2}, p\right)$. Let $\epsilon>0$ be given. Then there exists $\rho>0$ such that the sets

$$
\left\{k \in \mathbb{N}: M_{1}\left(\frac{\left|\phi_{m, k}(x)\right|}{\rho}\right)^{p_{k}} \geq \epsilon\right\} \in I
$$

and

$$
\left\{k \in \mathbb{N}: M_{2}\left(\frac{\left|\phi_{m, k}(x)\right|}{\rho}\right)^{p_{k}} \geq \epsilon\right\} \in I
$$

Therefore, the inclusion

$$
\begin{aligned}
& \left\{k \in \mathbb{N}:\left(M_{1}+M_{2}\right)\left(\frac{\left|\phi_{m, k}(x)\right|}{\rho}\right)^{p_{k}} \geq \epsilon\right\} \\
& \subseteq\left[\left\{k \in \mathbb{N}: M_{1}\left(\frac{\left|\phi_{m, k}(x)\right|}{\rho}\right)^{p_{k}} \geq \epsilon\right\}\right. \\
& \left.\cup\left\{k \in \mathbb{N}: M_{2}\left(\frac{\left|\phi_{m, k}(x)\right|}{\rho}\right)^{p_{k}} \geq \epsilon\right\}\right]
\end{aligned}
$$

implies that

$$
\left\{k \in \mathbb{N}:\left(M_{1}+M_{2}\right)\left(\frac{\left|\phi_{m, k}(x)\right|}{\rho}\right)^{p_{k}} \geq \epsilon\right\} \in I
$$

showing that $x=\left(x_{k}\right) \in{ }_{0} B V_{\sigma}^{I}\left(M_{1}+M_{2}, p\right)$
Hence, ${ }_{0} B V_{\sigma}^{I}\left(M_{1}, p\right) \cap_{0} B V_{\sigma}^{I}\left(M_{2}, p\right) \subseteq{ }_{0} B V_{\sigma}^{I}\left(M_{1}+M_{2}, p\right)$
For $\mathcal{X}=B V_{\sigma}^{I}, \mathcal{X}={ }_{0} \mathcal{M}_{B V_{\sigma}}^{I}$ and $\mathcal{X}=\mathcal{M}_{B V_{\sigma}}^{I}$ the inclusions are similar.
For $M_{2}(x)=x$ and $M_{1}(x)=M(x)$, for all $x \in[0, \infty)$, we have the following corollary.
Corollary. $\mathcal{X} \subseteq \mathcal{X}(M, p)$ for $\mathcal{X}={ }_{0} B V_{\sigma}^{I}, B V_{\sigma}^{I},{ }_{0} \mathcal{M}_{B V_{\sigma}}^{I}$ and $\mathcal{M}_{B V_{\sigma}}^{I}$.
Theorem 2.4. For any orlicz function M, the spaces ${ }_{0} B V_{\sigma}^{I}(M, p)$ and ${ }_{0} \mathcal{M}_{B V_{\sigma}}^{I}(M, p)$ are solid and monotone.
Proof. Here we consider ${ }_{0} B V_{\sigma}^{I}(M, p)$. For ${ }_{0} \mathcal{M}_{B V_{\sigma}}^{I}(M, p)$, the proof shall be similar.
For,let $x=\left(x_{k}\right) \in{ }_{0} B V_{\sigma}^{I}(M, p)$ be any arbitrary element. \Rightarrow For $\epsilon>0, \exists \rho>0$ with

$$
\left\{k \in \mathbb{N}: M\left(\frac{\left|\phi_{m, k}(x)\right|}{\rho}\right)^{p_{k}} \geq \epsilon\right\} \in I
$$

Let $\left(\alpha_{k}\right)$ be a sequence of scalars such that

$$
\left|\alpha_{k}\right| \leq 1, \text { for all } \mathrm{k} \in \mathbb{N}
$$

Now, since M is an Orlicz function
We have,

$$
M\left(\frac{\left|\alpha_{k} \phi_{m, k}(x)\right|}{\rho}\right)^{p_{k}} \leq\left|\alpha_{k}\right|^{p_{k}} M\left(\frac{\left|\phi_{m, k}(x)\right|}{\rho}\right)^{p_{k}} \leq M\left(\frac{\left|\phi_{m, k}(x)\right|}{\rho}\right) p_{k}
$$

Therefore,

$$
\left\{k \in \mathbb{N}: M\left(\frac{\left|\alpha_{k} \phi_{m, k}(x)\right|}{\rho}\right)^{p_{k}} \geq \epsilon\right\} \subseteq\left\{k \in \mathbb{N}: M\left(\frac{\left|\phi_{m \cdot k}(x)\right|}{\rho}\right)^{p_{k}} \geq \epsilon\right\} \in I
$$

implies that

$$
\left\{k \in \mathbb{N}: M\left(\frac{\left|\alpha_{k} \phi_{m, k}(x)\right|}{\rho}\right)^{p_{k}} \geq \epsilon\right\} \in I
$$

Thus, $\left(\alpha_{k} x_{k}\right) \in{ }_{0} B V_{\sigma}^{I}(M, p)$.
Hence ${ }_{0} B V_{\sigma}^{I}(M, p)$ is solid
Therefore, by lemma(I) ${ }_{0} B V_{\sigma}^{I}(M)$ is monotone. Hence the result.

Theorem 2.5. The spaces $\mathcal{M}_{B V_{\sigma}}^{I}(M, p)$ and ${ }_{0} \mathcal{M}_{B V_{\sigma}}^{I}(M, p)$ are not seperable.
Proof. By a counter example we prove the result for the space $\mathcal{M}_{B V_{\sigma}}^{I}(M, p)$.
For ${ }_{0} \mathcal{M}_{B V_{\sigma}}^{I}(M, p)$, the result follows similarly.

Counter Example.

Let A be an infinite subset of increasing natural numbers such that $A \in I$.
Let

$$
p_{k}=\left\{\begin{array}{l}
1, \text { if } \mathrm{k} \in A \\
2, \text { otherwise }
\end{array}\right.
$$

Let $P_{0}=\left\{\left(x_{k}\right): x_{k}=0\right.$ or 1 , for $k \in M$ and $x_{k}=0$, otherwise $\}$.
Since A is infinite, so P_{0} is uncountable. Consider the class of open balls $B_{1}=\left\{B\left(z, \frac{1}{2}\right): z \in P_{0}\right\}$.
Let C_{1} be an open cover of $\mathcal{M}_{B V_{\sigma}}^{I}(M, p)$ containing B_{1}.
Since B_{1} is uncountable, so C_{1} cannot be reduced to a countable subcover for $\mathcal{M}_{B V_{\sigma}}^{I}(M, p)$. Thus $\mathcal{M}_{B V_{\sigma}}^{I}(M, p)$ is not seperable.

Theorem 2.6. Let $H=\sup _{k} p_{k}<\infty$ and I an admissible ideal. Then the following are equivalent.
(a) $x=\left(x_{k}\right) \in B V_{\sigma}^{I}(M, p)$;
(b) there exists $y=\left(y_{k}\right) \in B V_{\sigma}(M, p)$ such that $x_{k}=y_{k}$, for a.a.k.r.I;
(c) there exists $y=\left(y_{k}\right) \in B V_{\sigma}(M, p)$ and $z=\left(z_{k}\right) \in{ }_{0} B V_{\sigma}^{I}(M, p)$ such that $x_{k}=y_{k}+z_{k}$ for all $k \in \mathbb{N}$ and $\left\{k \in \mathbb{N}: M\left(\frac{\left|y_{k}^{\prime}-L\right|}{\rho}\right)^{p_{k}} \geq \epsilon\right\} \in I ;$
(d) there exists a subset $K=\left\{k_{1}<k_{2} \ldots.\right\}$ of \mathbb{N} such that $K \in £(I)$
and $\lim _{n \rightarrow \infty} M\left(\frac{\left|x_{k_{n}}^{\prime}-L\right|}{\rho}\right)^{p_{k_{n}}}=0$.
Proof. (a) implies (b). Let $x=\left(x_{k}\right) \in B V_{\sigma}^{I}(M, p)$. Then there exists $L \in \mathbb{C}$ such that

$$
\left\{k \in \mathbb{N}: M\left(\frac{\left|x_{k}^{\prime}-L\right|}{\rho}\right)^{p_{k}} \geq \epsilon\right\} \in I
$$

Let $\left(m_{t}\right)$ be an increasing sequence with $m_{t} \in \mathbb{N}$ such that

$$
\left\{k \leq m_{t}: M\left(\frac{\left|x_{k}^{\prime}-L\right|}{\rho}\right)^{p_{k}} \geq t^{-1}\right\} \in I
$$

Define a sequence $\left(y_{k}\right)$ as

$$
y_{k}=x_{k}, \text { for all } k \leq m_{1}
$$

For $m_{t}<k \leq m_{t+1}, t \in \mathbb{N}$.

$$
y_{k}=\left\{\begin{array}{cc}
x_{k}, & \text { if } M\left(\frac{\left|x_{k}^{\prime}-L\right|}{\rho}\right)^{p_{k}}<t^{-1} \\
\mathrm{~L}, \quad \text { otherwise } .
\end{array}\right.
$$

Then $y=\left(y_{k}\right) \in B V_{\sigma}(M, p)$ and form the following inclusion

$$
\left\{k \leq m_{t}: x_{k} \neq y_{k}\right\} \subseteq\left\{k \leq m_{t}: M\left(\frac{\left|x_{k}^{\prime}-L\right|}{\rho}\right)^{p_{k}} \geq \epsilon\right\} \in I
$$

We get $x_{k}=y_{k}$, for a.a.k.r.I.
(b) implies (c). For $\left(x_{k}\right) \in B V_{\sigma}^{I}(M, p)$. Then there exists $\left(y_{k}\right) \in B V_{\sigma}(M, p)$ such that $x_{k}=y_{k}$, for a.a.k.r.I. Let $K=\left\{k \in \mathbb{N}: x_{k} \neq y_{k}\right\}$, then $K \in I$.
Define a sequence (z_{k}) as

$$
z_{k}=\left\{\begin{array}{c}
x_{k}-y_{k}, \quad \text { if } k \in K \\
0, \text { otherwise }
\end{array}\right.
$$

Then $z_{k} \in{ }_{0} B V_{\sigma}^{I}(M, p)$ and $y_{k} \in B V_{\sigma}(M, p)$.
(c) implies (d). Suppose (c) holds. Let $\epsilon>0$ be given. Let $P_{1}=\left\{k \in \mathbb{N}: M\left(\frac{\left|x_{k_{n}}^{\prime}-L\right|}{\rho}\right)^{p_{k}} \geq \epsilon\right\} \in I$ and

$$
K=P_{1}^{c}=\left\{k_{1}<k_{2}<k_{3}<\ldots\right\} \in £(I) .
$$

Then, we have $\lim _{n \rightarrow \infty} M\left(\frac{\left|x_{k_{n}}^{\prime}-L\right|}{\rho}\right)^{p_{k_{n}}}=0$.
(d) implies (a). Let $K=\left\{k_{1}<k_{2}<k_{3}<\ldots\right\} \in £(I)$ and $\lim _{n \rightarrow \infty} M\left(\frac{\left|x_{k_{n}}^{\prime}-L\right|}{\rho}\right)^{p_{k_{n}}}=0$.

Then, for any $\epsilon>0$, and Lemma (II), we have

$$
\left\{k \in \mathbb{N}: M\left(\frac{\left|x_{k}^{\prime}-L\right|}{\rho}\right)^{p_{k}} \geq \epsilon\right\} \subseteq K^{c} \cup\left\{k \in \mathbb{N}: M\left(\frac{\left|x_{k_{n}}^{\prime}-L\right|}{\rho}\right)^{p_{k_{n}}} \geq \epsilon\right\} \in I
$$

implies that

$$
\left\{k \in \mathbb{N}: M\left(\frac{\left|x_{k}^{\prime}-L\right|}{\rho}\right)^{p_{k}} \geq \epsilon\right\} \in I
$$

Therefore, $\left(x_{k}\right) \in B V_{\sigma}^{I}(M, p)$.
Hence the result.
Theorem 2.7. Let $h=\inf _{k} p_{k}$ and $H=\sup _{k} p_{k}$. Then, the following results are equivalent. (a) $H<\infty$ and $h>0$. (b) ${ }_{0} B V_{\sigma}^{I}(M, p)=B V_{\circ \sigma}^{I}$.

Proof. Suppose that $H<\infty$ and $h>0$, then the inequalities $\min \left\{1, s^{h}\right\} \leq s^{p_{k}} \leq \max \left\{1, s^{H}\right\}$ hold for any $s>0$ and for all $k \in \mathbb{N}$.
Therefore the equivalent of (a) and (b) is obvious.
Theorem 2.8. Let $p=\left(q_{k}\right)$ and $q=\left(q_{k}\right)$ be two sequences of positive real numbers. Then ${ }_{0} \mathcal{M}_{B V_{\sigma}}^{I}(M, p) \supseteq$ ${ }_{0} \mathcal{M}_{B V_{\sigma}}^{I}(M, q)$ if and only if $\lim _{k \in K} \inf \frac{p_{k}}{q_{k}}>0$, where $K^{c} \subseteq \mathbb{N}$ such that $K \in I$.
Proof. Let $\lim _{k \in K} \inf \frac{p_{k}}{q_{k}}>0$. and $\left(x_{k}\right) \in{ }_{0} \mathcal{M}_{B V_{\sigma}}^{I}(M, p)$. Then, there exists $\beta>0$ such that $p_{k}>\beta q_{k}$, for all sufficiently large $k \in K$.
Since $\left(x_{k}\right) \in{ }_{0} \mathcal{M}_{B V_{\sigma}}^{I}(M, p)$.
For a given $\epsilon>0, \exists \rho>0$ such that

$$
B_{0}=\left\{k \in \mathbb{N}: M\left(\frac{\left|x_{k}^{\prime}\right|}{\rho}\right)^{p_{k}} \geq \epsilon\right\} \in I
$$

Let $G_{0}=K^{c} \cup B_{0}$ Then $G_{0} \in I$.
Then, for all sufficiently large $k \in G_{0}$,

$$
\left\{k \in \mathbb{N}: M\left(\frac{\left|x_{k}^{\prime}\right|}{\rho}\right)^{p_{k}} \geq \epsilon\right\} \subseteq\left\{k \in \mathbb{N}:\left\{k \in \mathbb{N}: M\left(\frac{\left|x_{k}^{\prime}\right|}{\rho}\right)^{\beta q_{k}} \geq \epsilon\right\} \in I\right.
$$

implies that

$$
\left\{k \in \mathbb{N}: M\left(\frac{\left|x_{k}^{\prime}\right|}{\rho}\right)^{p_{k}} \geq \epsilon\right\} \in I
$$

Therefore $\left(x_{k}\right) \in{ }_{0} \mathcal{M}_{B V_{\sigma}}^{I}(M, p)$.
Converse part of the result follows obviously.

Theorem 2.9. Let $p=\left(p_{k}\right)$ and $q=\left(q_{k}\right)$ be two sequences of positive real numbers. Then

$$
{ }_{0} \mathcal{M}_{B V_{\sigma}}^{I}(M, q) \supseteq{ }_{0} \mathcal{M}_{B V_{\sigma}}^{I}(M, p)
$$

if and only if $\lim _{k \in K} \inf \frac{q_{k}}{p_{k}}>0$, where $K^{c} \subseteq \mathbb{N}$ such that $K \in I$.
Proof. The proof follows similarly as the proof of Theorem 2.8.
Theorem 2.10. Let $p=\left(p_{k}\right)$ and $q=\left(q_{k}\right)$ be two sequences of positive real numbers. Then ${ }_{0} \mathcal{M}_{B V_{\sigma}}^{I}(M, p)=$ ${ }_{0} \mathcal{M}_{B V_{\sigma}}^{I}(M, q)$ if and only if $\lim _{k \in K} \inf \frac{p_{k}}{q_{k}}>0$, and $\lim _{k \in K} \inf \frac{q_{k}}{p_{k}}>0$, where $K^{c} \subseteq \mathbb{N}$ such that $K \in I$.

Proof.On combining Theorem 2.9 and 2.10 we get the required result.
Theorem 2.11. The set $\mathcal{M}_{B V_{\sigma}}^{I}(M, p)$ is closed subspace of $\ell_{\infty}(M, p)$.
Proof. Let $\left(x_{k}^{(i)}\right)$ be a Cauchy sequence in $\mathcal{M}_{B V_{\sigma}}^{I}(M, p)$ such that $x^{(i)} \rightarrow x$.
We show that $x \in \mathcal{M}_{B V_{\sigma}}^{I}(M, p)$
Since $\left(x_{k}^{(i)}\right) \in \mathcal{M}_{B V_{\sigma}}^{I}(M, p)$, then there exists a sequence a_{i} and $\rho>0$ such that

$$
\left\{k \in \mathbb{N}: M\left(\frac{\left|\left(x_{k}^{(i)}\right)^{\prime}-a_{i}\right|}{\rho}\right)^{p_{k}} \geq \epsilon\right\} \in I
$$

We need to show that
(1) $\left(a_{i}\right)$ converges to a.
(2) If $U=\left\{k \in \mathbb{N}: M\left(\frac{\left|\left(x_{k}^{(i)}\right)^{\prime}-a\right|}{\rho}\right)^{p_{k}}<\epsilon\right\}$, then $U^{c} \in I$.
(1) Since $\left(x_{k}^{(i)}\right)$ is Cauchy sequence in $\mathcal{M}_{B V_{\sigma}}^{I}(M, p) \Rightarrow$ for a given $\epsilon>0$, there exists $k_{0} \in \mathbb{N}$ such that

$$
\sup _{k} M\left(\frac{\left|\left(x_{k}^{(i)}\right)^{\prime}-\left(x_{k}^{(j)}\right)^{\prime}\right|}{\rho}\right)^{p_{k}}<\frac{\epsilon}{3} \text {, for all } \mathrm{i}, \mathrm{j} \geq k_{0} .
$$

For $\epsilon>0$, we have

$$
\begin{gathered}
B_{i j}=\left\{k \in \mathbb{N}: M\left(\frac{\left|\left(x_{k}^{(i)}\right)^{\prime}-\left(x_{k}^{(j)}\right)^{\prime}\right|}{\rho}\right)^{p_{k}}<\frac{\epsilon}{3}\right\} \\
B_{i}=\left\{k \in \mathbb{N}: M\left(\frac{\left|\left(x_{k}^{(i)}\right)^{\prime}-a_{i}\right|}{\rho}\right)^{p_{k}}<\frac{\epsilon}{3}\right\} \\
B_{j}=\left\{k \in \mathbb{N}: M\left(\frac{\left|\left(x_{k}^{(j)}\right)^{\prime}-a_{j}\right|}{\rho}\right)^{p_{k}}<\frac{\epsilon}{3}\right\}
\end{gathered}
$$

Then, $B_{i j}^{c}, B_{i}^{c}, B_{j}^{c} \in I$
Let $B^{c}=B_{i j}^{c} \cup B_{i}^{c} \cup B_{j}^{c}$, where $B=\left\{k \in \mathbb{N}: M\left(\frac{\left|a_{i}-a_{j}\right|}{\rho}\right)^{p_{k}}<\epsilon\right\}$.
Then, $B^{c} \in I$.
We choose $k_{0} \in B^{c}$.
Then for each $i, j \geq k_{0}$,
we have

$$
\begin{aligned}
& \left\{k \in \mathbb{N}: M\left(\frac{\left|a_{i}-a_{j}\right|}{\rho}\right)^{p_{k}}<\epsilon\right\} \supseteq\left[\left\{k \in \mathbb{N}: M\left(\frac{\left|a_{i}-a_{j}\right|}{\rho}\right)^{p_{k}}<\frac{\epsilon}{3}\right\}\right. \\
& \cap\left\{k \in \mathbb{N}: M\left(\frac{\left|\left(x_{k}^{(i)}\right)^{\prime}-a_{i}\right|}{\rho}\right)^{p_{k}}<\frac{\epsilon}{3}\right\}
\end{aligned}
$$

$$
\left.\cap\left\{k \in \mathbb{N}: M\left(\frac{\left|a_{j}-\left(x_{k}^{(j)}\right)^{\prime}\right|}{\rho}\right)^{p_{k}}<\frac{\epsilon}{3}\right\}\right]
$$

implies that
$\left(a_{i}\right)$ is a Cauchy sequence of scalars in C, so there exists a scalar a in C such that $a_{i} \rightarrow a$, as $n \rightarrow \infty$.
(2) Let $0<\delta<1$ be given. Then we show that if
$U=\left\{k \in \mathbb{N}: M\left(\frac{\left|\left(x_{k}^{(i)}\right)^{\prime}-a\right|}{\rho}\right)^{p_{k}} \leq \epsilon\right\}$, then $U^{c} \in I$.
Since $x^{(i)} \rightarrow x$, then there exists $q_{0} \in \mathbb{N}$ such that

$$
\begin{equation*}
P=\left\{k \in \mathbb{N}: M\left(\frac{\left|\left(x_{k}^{\left(q_{0}\right)}\right)^{\prime}-x_{k}^{\prime}\right|}{\rho}\right)^{p_{k}}<\left(\frac{\delta}{3 D}\right)^{H}\right\} \tag{2.21}
\end{equation*}
$$

where $D=\max \left\{1,2^{G-1}\right\}, G=\sup _{k} p_{k} \geq 0$ and $H=\max \left\{1, \sup _{k} p_{k}\right\}$
implies $P^{c} \in I$.
The number q_{0} can be chosen that together with (2.21), we have

$$
Q=\left\{k \in \mathbb{N}: M\left(\frac{\left|a_{q_{0}}-a\right|}{\rho}\right)^{p_{k}}<\left(\frac{\delta}{3 D}\right)^{H}\right\}
$$

such that $Q^{c} \in I$.
Since

$$
\left\{k \in \mathbb{N}: M\left(\frac{\left|\left(x_{k}^{\left(q_{0}\right)}\right)^{\prime}-a_{q_{0}}\right|}{\rho}\right)^{p_{k}} \geq \delta\right\} \in I
$$

Then, we have a subset S of \mathbb{N} such that $S^{c} \in I$, where

$$
S=\left\{k \in \mathbb{N}: M\left(\frac{\left|\left(x_{k}^{\left(q_{0}\right)}\right)^{\prime}-a_{q_{0}}\right|}{\rho}\right)^{p_{k}}<\left(\frac{\delta}{3 D}\right)^{H}\right\} .
$$

Let $U^{c}=P^{c} \cup Q^{c} \cup S^{c}$, where

$$
U=\left\{k \in \mathbb{N}: M\left(\frac{\mid\left(x_{k}^{\prime}-a \mid\right.}{\rho}\right)^{p_{k}}<\delta\right\}
$$

Therefore, for each $k \in U^{c}$, we have

$$
\begin{aligned}
\left\{k \in \mathbb{N}: M\left(\frac{\mid\left(x_{k}^{\prime}-a \mid\right.}{\rho}\right)^{p_{k}}<\delta\right\} \supseteq & {\left[\left\{k \in \mathbb{N}: M\left(\frac{\left|\left(x_{k}^{\left(q_{0}\right)}\right)^{\prime}-x_{k}{ }^{\prime}\right|}{\rho}\right)^{p_{k}}<\left(\frac{\delta}{3 D}\right)^{H}\right\}\right.} \\
& \cap\left\{k \in \mathbb{N}: M\left(\frac{\left|a_{q_{0}}-a\right|}{\rho}\right)^{p_{k}}<\left(\frac{\delta}{3 D}\right)^{H}\right\} \\
& \left.\cap\left\{k \in \mathbb{N}: M\left(\frac{\left|\left(x_{k}^{\left(q_{0}\right)}\right)^{\prime}-a_{q_{0}}\right|}{\rho}\right)^{p_{k}}<\left(\frac{\delta}{3 D}\right)^{H}\right\}\right] .
\end{aligned}
$$

Then the result follows.
Since the inclusions $\mathcal{M}_{B V_{\sigma}}^{I}(M, p) \subset \ell_{\infty}(M, p)$ and ${ }_{0} \mathcal{M}_{B V_{\sigma}}^{I}(M, p) \subset \ell_{\infty}(M, p)$ are strict so in view of Theorem (2.11) we have the following result.

Theorem 2.12. The spaces $\mathcal{M}_{B V_{\sigma}}^{I}(M, p)$ and ${ }_{0} \mathcal{M}_{B V_{\sigma}}^{I}(M, p)$ are nowhere dense subsets of $\ell_{\infty}(M, p)$.
Theorem 2.13. For an Orlicz function M, the spaces ${ }_{0} B V_{\sigma}^{I}(M, p)$ and $B V_{\sigma}^{I}(M, p)$ are sequence algebra.
Proof. Here we consider ${ }_{0} B V_{\sigma}^{I}(M, p)$. For the other result the proof is similar.
Let $x=\left(x_{k}\right), y=\left(y_{k}\right) \in{ }_{0} B V_{\sigma}^{I}(M, p)$ be any two arbitrary elements.
$\Rightarrow \exists \rho_{1}, \rho_{2}>0$ such that

$$
\begin{equation*}
\left\{k \in \mathbb{N}: M\left(\frac{\left|\phi_{m, k}(x)\right|}{\rho_{1}} \geq \epsilon\right)^{p_{k}}\right\} \in I \tag{2.22}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\{k \in \mathbb{N}: M\left(\frac{\left|\phi_{m, k}(y)\right|}{\rho_{1}} \geq \epsilon\right)^{p_{k}}\right\} \in I \tag{2.23}
\end{equation*}
$$

Let $\rho=\rho_{1} \rho_{2}>0$
Then, it is obvious from (2.22) and (2.23) that

$$
\left\{k \in \mathbb{N}: M\left(\frac{\left|\phi_{m, k}(x) \phi_{m, k}(y)\right|}{\rho} \geq \epsilon\right)^{p_{k}}\right\} \in I
$$

which further implies that $\left(x_{k} \cdot y_{k}\right)=\left(x_{k} y_{k}\right) \in{ }_{0} B V_{\sigma}^{I}(M, p)$
Hence, ${ }_{0} B V_{\sigma}^{I}(M, p)$ is a Sequence algebra.
Theorem 2.11. Let M be an Orlicz function. Then, ${ }_{\circ} B V I_{\sigma}(M, p) \subset B V I_{\sigma}(M, p) \subset{ }_{\infty} B V_{\sigma}^{I}(M, p)$.
Proof. Let M be an Orlicz function. Then, we have to show that ${ }_{0} B V_{\sigma}^{I}(M, p) \subseteq B V_{\sigma}^{I}(M, p) \subseteq{ }_{\infty} B V_{\sigma}^{I}(M, p)$
Firstly, ${ }_{0} B V_{\sigma}^{I}(M) \subseteq B V_{\sigma}^{I}(M)$ is obvious.
Let $x=\left(x_{k}\right) \in B V_{\sigma}^{I}(M, p)$. Then there exists $L \in \mathbb{C}$ and $\rho>0$ such that

$$
\left\{k \in \mathbb{N}: M\left(\frac{\left|x_{k}^{\prime}-L\right|}{\rho}\right)^{p_{k}} \geq \epsilon\right\} \in I
$$

That is

$$
I-\lim M\left(\frac{\left|x_{k}^{\prime}-L\right|}{\rho}\right)^{p_{k}}=0
$$

Therefore, we have

$$
M\left(\frac{\left|x_{k}^{\prime}\right|}{2 \rho}\right)^{p_{k}} \leq \frac{1}{2} M\left(\frac{\left|x_{k}^{\prime}-L\right|}{\rho}\right)^{p_{k}}+\frac{1}{2} M\left(\frac{|L|}{\rho}\right)^{p_{k}}
$$

Taking supremum over k both sides, we get $x=\left(x_{k}\right) \in{ }_{\infty} B V_{\sigma}^{I}(M, p)$.
Hence, ${ }_{\circ} B V_{\sigma}^{I}(M, p) \subset B V_{\sigma}^{I}(M, p) \subset{ }_{\infty} B V_{\sigma}^{I}(M, p)$.
Theorem 2.15. If I is not maximal and $I \neq I_{f}$. Then, the space ${ }_{0} B V_{\sigma}^{I}(M, p)$ and $B V_{\sigma}^{I}(M, p)$ are not symmetric.

Proof. Let $A \in I$ be any infinite set and $M(x)=x$, for all $\mathrm{x} \in[0, \infty)$.
Define a sequence $\left(x_{k}\right)$ as

$$
x_{k}=\left\{\begin{array}{cc}
1, & \text { if } k \in A \\
0, & \text { otherwise }
\end{array}\right.
$$

Then, it is clear that $\left(x_{k}\right) \in{ }_{0} B V_{\sigma}^{I}(M, p) \nsubseteq B V_{\sigma}^{I}(M, p)$
Let $K \subseteq \mathbb{N}$ be such that $K \notin I$ and $\mathbb{N} \backslash K \notin I$.
Let $\phi: K \rightarrow A$ and $\psi: K^{c} \rightarrow A^{c}$ be bijective maps. Then, the mapping $\pi: \rightarrow \mathbb{N} \rightarrow \mathbb{N}$ defined by

$$
\pi(k)=\left\{\begin{aligned}
\phi(k), & \text { if } k \in K \\
\psi k, & \text { otherwise }
\end{aligned}\right.
$$

is a permutation on \mathbb{N}

But $\left(x_{\pi}(k)\right) \notin B V_{\sigma}^{I}(M, p)$ and hence $\left(x_{\pi}(k)\right) \notin{ }_{0} B V_{\sigma}^{I}(M, p)$ showing that

$$
B V_{\sigma}^{I}(M, p) \text { and }{ }_{0} B V_{\sigma}^{I}(M, p)
$$

are not symmetric sequence spaces.

Acknowledgements

The authors would like to record their gratitude to the reviewer for his careful reading and making some useful corrections which improved the presentation of the paper.

References

[1] Z.U.Ahmad,M.Mursaleen : An application of Banach limits. Proc.Amer. Math. soc. 103,244-246,(1983).
[2] S.Banach: Theorie des operations lineaires,Warszawa.(1932). 103,244-246(1986).
[3] V. K. Bhardwaj and N., Singh: Some sequence spaces defined by Orlicz functions.Demonstratio Math. 33(3) (2000) 571582.
[4] K. Demirci : I-limit superior and limit inferior.Math. Commun.,6:165-172(2001).
[5] A. Esi:Some new sequence spaces defined by Orlicz functions, Bull. Inst. Math. Acad. Sinica. 27 (1999) 7176.
[6] H.Fast:Sur la convergence statistique,Colloq.Math.2(1951),241-244.
[7] J.A.Fridy:On statistical convergence,Analysis.5(1985).301-313.
[8] B. Hazarika et al.: On paranormed Zweier ideal convergent sequence spaces defined By Orlicz function., Journal of the Egyptian Mathematical Society (2013), http://dx.doi.org/10.1016/j.joems.2013.08.005
[9] P.K.Kamthan and M.Gupta : Sequence spaces and series.Marcel Dekker Inc,New York.(1980).
[10] V.A. Khan :On a new sequence space defined by Orlicz Functions. Commun.Fac.Sci Univ.Ank.Series A1.57,25-33,(2008).
[11] V.A. Khan, K. Ebadullah, A.Esi, N. Khan, M. Shafiq: On paranorm Zweier I-convergent sequences spaces, Journal of Mathematics (Hindawi Publishing Corporation) Volume 2013 (2013), Article ID 613501, 6 pages
[12] V.A Khan and K.Ebadullah :On some new I-convergent sequence space., Mathematics,Aeterna,Vol. 3 No.2151-159(2013).
[13] V.A.Khan and K. Ebadullah,K.: On a new I-convergent sequence space.Analysis,32, 199-208(2012).
[14] J.P.King : Almost summable Sequences. Proc.Amer. Math. soc.17,1219-1225,(1966).
[15] P.Kostyrko,M. Mačaj and T.Šalát :Statistical convergence and I-convergence.Real Analysis Exchange.
[16] P.Kostyrko, T.Šalát and W.Wilczyński :I-convergence,Raal Analysis Analysis Exchange.26(2),669-686(2000).
[17] C.G.Lascarides: On the equivalence of certain sets of sequences,Indian J. Math. 25(1983),41-52.
[18] J. Lindenstrauss and L. Tzafriri:On Orlicz sequence spaces, Israel J. Math. 101(1971) 379390.
[19] G.G. Lorentz,: A contribution to the theory of divergent series. Acta Math.,80: 167-190(1948).
[20] I.J.Maddox,: Elements of Functional Analysis,Cambridge University Press.(1970)
[21] I.J. Maddox :Paranormed sequence spaces generated by infinite matrices., Math. Proc. Cambridge Philos. Soc. 64 (1968) 335340
[22] M.Mursaleen: Matrix transformation between some new sequence spaces. Houston J. Math.,9: 505-509(1983).
[23] M. Mursaleen: On some new invariant matrix methods of summability. Quart. J. Math. Oxford,(2)34: 77-86(1983).
[24] H. Nakano: Modular sequence spaces., Proc. Jpn. Acad. Ser. A Math. Sci. 27 (1951) 508512.
[25] S.D.Parshar and B.Choudhary:Sequence Spaces Defined by Orlicz function.Indian J,Pure Appl.Math.25.419-428(1994) spaces. Math. Vesnik. 49 (1997) 187196.
[26] R.A.Raimi: Invariant means and invariant matrix methods of summability. Duke J. Math.,30: 81-94(1963).
[27] T.Šalát,B.C.Tripathy and M.Ziman: On some properties of I-convergence. Tatra Mt. Math. Publ.,28: 279-286(2004).
[28] T.Šalát B.C.Tripathy and M.Ziman: On I-convergence field. Ital.J.Pure Appl. Math.,17: 45-54(2005).
[29] P.Schafer: Infinite matrices and Invariant means. Proc.Amer. Math. soc.36,104-110,(1972).
[30] B.C.Tripathy and B.Hazarika: Paranorm I-convergent sequence spaces. Math. Slovaca.59(4):485-494(2009).
[31] B.C. Tripathy, B. Hazarika:I-convergent sequence spaces associated with multiplier sequences, Math. Ineq. Appl. 11 (3) (2008) 543548.
[32] B.C.Tripathy and B.Hazarika:Some I-Convergent sequence spaces defined by Orlicz function.,Acta Mathematicae Applicatae Sinica.27(1)149-154.(2011)

