

Global Journal of Mathematical Analysis, 2 (2) (2014) 28-43 © Science Publishing Corporation www.sciencepubco.com/index.php/GJMA doi: 10.14419/gjma.v2i2.2162 Research Paper

On paranorm BV_{σ} I-convergent sequence spaces defined by an Orlicz function

Vakeel.A.Khan^{1*},Ayhan Esi², Mohd Shafiq¹

¹Department of Mathematics Aligarh Muslim University, Aligarh-202002(INDIA) ² Adiyaman University Science and Art Faculty Department of Mathematics 02040, Adiyaman, Turkey *Corresponding author E-mail : vakhanmaths@gmail.com

Abstract

In this article we introduce and study ${}_{0}BV_{\sigma}^{I}(M,p)$, $BV_{\sigma}^{I}(M,p)$ and ${}_{\infty}BV_{\sigma}^{I}(M,p)$ sequence spaces where $p = (p_{k})$ is the sequence of strictly positive real numbers with the help of BV_{σ} space [see [23]] and an Orlicz function M. We study some topological and algebraic properties and decomposition theorem. Further we prove some inclusion relations related to these new spaces.

Keywords: Bounded variation, Invariant mean, σ -Bounded variation, Ideal, Filter, Orlicz function, I-convergence, I-null, Solid space, Sequence algebra, paranorm.

1. Introduction

Let $\mathbb{N},\,\mathbb{R}$ and \mathbb{C} be the sets of all natural, real and complex numbers respectively. We denote

$$\omega = \{ x = (x_k) : x_k \in \mathbb{R} \text{ or } \mathbb{C} \}$$

the space of all real or complex sequences.

Let ℓ_{∞} , c and c_0 denote the Banach spaces of bounded, convergent and null sequences respectively with norm

$$\|x\| = \sup_{k} |x_k|$$

Let v denote the space of sequences of bounded variation. That is,

$$v = \left\{ x = (x_k) : \sum_{k=0}^{\infty} |x_k - x_{k-1}| < \infty = 0 \right\}$$
(1.1)

v is a Banach Space normed by

$$||x|| = \sum_{k=0}^{\infty} |x_k - x_{k-1}| \qquad (see[23])$$

Let σ be a mapping of the set of the positive integers into itself having no finite orbits. A continuous linear functional ϕ on ℓ_{∞} is said to be an invariant mean or σ -mean if and only if (i) $\phi(x) \ge 0$ where the sequence $x = (x_k)$ has $x_k \ge 0$ for all k.

(ii) $\phi(e) = 1$ where $e = \{1, 1, 1, ...\},\$

(iii) $\phi(x_{\sigma(n)}) = \phi(x)$ for all $x \in \ell_{\infty}$

If $x = (x_k)$, write $Tx = (Tx_k) = (x_{\sigma(k)})$. It can be shown that

$$V_{\sigma} = \left\{ x = (x_k) : \lim_{m \to \infty} t_{m,k}(x) = L \text{ uniformly in } k, \ L = \sigma - \lim x \right\}$$
(1.2)

where $m \ge 0, k > 0$.

$$t_{m,k}(x) = \frac{x_k + x_{\sigma(k)} \dots + x_{\sigma^m(k)}}{m+1} \text{ and } t_{-1, k} = 0$$
(1.3)

where $\sigma_m(k)$ denote the m-th iterate of $\sigma(k)$ at k. In case σ is the translation mapping, that is, $\sigma(k)=k+1$, σ -mean is called a Banach limit(see,[2]) and V_{σ} , the set of bounded sequences of all whose invariant means are equal, is the set of almost convergent sequences. The special case of (1.2) in which $\sigma(n)=n+1$ was given by Lorentz[19, Theorem 1], and that the general result can be proved in a similar way. It is familiar that a Banach limit extends the limit functional on c (see,[19]) in the sense that

$$\phi(x) = \lim x, \text{ for all } x \in c \tag{1.4},$$

Remark 1.1. In view of above discussion we have $c \subset V_{\sigma}$.

Theorem 1.2. [23,Theorem 1.1] A σ -mean extends the limit functional on c in the sense that $\phi(x) = \lim x$ for all $x \in c$ if and only if σ has no finite orbits. That is, if and only if for all $k \ge 0, j \ge 1, \sigma^j(k) \ne k$ Put

$$\phi_{m,k}(x) = t_{m,k}(x) - t_{m-1,k}(x) \tag{1.5}$$

assuming that $t_{-1, k} = 0$

A straight forward calculation shows that (see[22])

$$\phi_{m,k}(x) = \begin{cases} \frac{1}{m(m+1)} \sum_{j=1}^{m} j(x_{\sigma}^{j}(k) - x_{\sigma}^{j-1}(k)), & \text{if}(m \ge 1), \\ x_{k} & \text{if}(m = 0) \end{cases}$$
(1.6)

For any sequence x, y and scalar λ , we have

$$\phi_{m,k}(x+y) = \phi_{m,k}(x) + \phi_{m,k}(y)$$

and

$$\phi_{m,k}(\lambda x) = \lambda \phi_{m,k}(x).$$

Definition 1.3. A sequence $x \in \ell_{\infty}$ is of σ -bounded variation if and only if

(i) $\sum_{m=0}^{\infty} |\phi_{m,k}(x)|$ converges uniformly in k. (ii) $\lim_{m\to\infty} t_{m,k}(x)$, which must exist, should take the same value for all k.

Subsequently invariant means have been studied by Ahmad and Mursaleen [23,1,22], J.P.King [14],Raimi [26], Khan and Ebadullah [12,13] and many others. Mursaleen [23] defined the sequence space BV_{σ} , the space of all sequence of σ -bounded variation as

$$BV_{\sigma} = \{x \in \ell_{\infty} : \sum_{m} | \phi_{m,k}(x) | < \infty, \text{uniformly in k}\}$$

Theorem 1.4. BV_{σ} is a Banach space normed by

$$||x|| = \sup_{k} \sum |\phi_{m,k}(x)|$$
 (c.f.[23], [26], [29], [22])

Definition 1.5. A function $M : [0, \infty) \to [0, \infty)$ is said to be an Orlicz function if it satisfies the following conditions

(i) M is continuous, convex and non-decreasing (ii) M(0) = 0, M(x) > 0 and $M(x) \to \infty$ as $x \to \infty$

called modulus function.

Remark 1.6. If the convexity of an Orlicz function is replaced by $M(x+y) \leq M(x) + M(y)$, then this function is

Remark 1.7. If M is an Orlicz function, then $M(\lambda x) \leq \lambda M(x)$ for all λ with $0 < \lambda < 1$.

An Orlicz function M is said to satisfy Δ_2 – Condition for all values of u if there exists a constant K > 0 such that $M(Lu) \leq \text{KL}M(u)$ for all values of L > 1.

Lindenstrauss and Tzafriri[18] used the idea of an Orlicz function to construct the sequence space

$$\ell_M = \left\{ x \in \omega : \sum_{k=1}^{\infty} M(\frac{|x_k|}{\rho}) < \infty, \text{ for some } \rho > 0 \right\}.$$
(1.7)

The space ℓ_M becomes a Banach space with the norm

$$\|x\| = \inf\left\{\rho > 0: \sum_{k=1}^{\infty} M(\frac{|x_k|}{\rho}) \le 1\right\}$$
(1.8)

which is called an Orlicz sequence space. The space ℓ_M is closely related to the space ℓ_p which is an Orlicz sequence space with $M(t) = t^P$ for 1 .

Later on some Orlicz sequence spaces were investigated by Parashar and Choudhury [25], Maddox [20], Khan [10], Kamthan and Gupta [9], Bhardwaj and Singh [3], and many others.

Definition 1.8. Let X be a linear space. A function $g: X \longrightarrow R$ is called paranorm, if for all $x, y \in X$, (PI) g(x) = 0 if $x = \theta$, (P2) g(-x) = g(x), (P3) $g(x + y) \le g(x) + g(y)$, (P4) If (λ_n) is a sequence of scalars with $\lambda_n \to \lambda$ $(n \to \infty)$ and $x_n, a \in X$ with $x_n \to a$ $(n \to \infty)$ in the sense that $g(x_n - a) \to 0$ $(n \to \infty)$, then $g(\lambda_n x_n - \lambda a) \to 0$ $(n \to \infty)$.

The concept of paranorm is closely related to linear metric spaces. It is a generalization of that of absolute value(see,[21]). The notion of paranormed sequence space was studied at the initial stage by Nakano[24]. Later on, it was further investigated by Maddox[20,21], Lascarides[17], Tripathy[30] and many others. A paranorm g for which g(x) = 0 implies $x = \theta$ is called a total paranorm on X, and the pair (X, g) is called a totally paranormed space.

Initially, as a generalization of statistical convergence[6,7], the notation of ideal convergence (I-convergence) was introduced and studied by Kostyrko, Mačaj, Salăt and Wilczyńki ([15,16]). Later on, it was studied by Šalát and Tripathy [30], Hazarika [8,32], Khan and Ebadullah [11,12,13], Demirci [4] and many others.

Here we give some important definitions.

Definition 1.9. A sequence $x=(x_k) \in \omega$ is said to be statistically convergent to a limit $L \in \mathbb{C}$ if for every $\epsilon > 0$, we have

$$\lim_{k} \frac{1}{k} |\{n \in \mathbb{N} : |x_k - L| \ge \epsilon, n \le k\}| = 0$$

where vertical lines denote the cardinality of the enclosed set.

Definition 1.10. Let N be a non empty set. Then a family of sets $I \subseteq 2^N$ (power set of N) is said to be an ideal if 1) I is additive i.e $\forall A, B \in I \Rightarrow A \cup B \in I$ 2) I is hereditary i.e $\forall A \in I$ and $B \subseteq A \Rightarrow B \in I$.

Definition 1.11. A non-empty family of sets $\pounds(I) \subseteq 2^N$ is said to be filter on N if and only if 1) $\Phi \notin \pounds(I)$, 2) $\forall A, B \in \pounds(I)$ we have $A \cap B \in \pounds(I)$, 3) $\forall A \in \pounds(I)$ and $A \subseteq B \Rightarrow B \in \pounds(I)$.

Definition 1.12. An Ideal $I \subseteq 2^N$ is called non-trivial if $I \neq 2^N$.

Definition 1.13. A non-trivial ideal $I \subseteq 2^N$ is called admissible if $\{\{x\} : x \in N\} \subseteq I$.

Definition 1.14. A non-trivial ideal I is maximal if there cannot exist any non-trivial ideal $J \neq I$ containing I as a subset.

Remark 1.15. For each ideal I, there is a filter $\pounds(I)$ corresponding to I. i.e $\pounds(I) = \{K \subseteq N : K^c \in I\}$, where $K^c = N \setminus K$.

Definition 1.16. A sequence $x = (x_k) \in \omega$ is said to be *I*-convergent to a number *L* if for every $\epsilon > 0$, the set $\{k \in N : |x_k - L| \ge \epsilon\} \in I$. In this case, we write $I - \lim x_k = L$.

Definition 1.17. A sequence $x = (x_k) \in \omega$ is said to be *I*-null if L = 0. In this case, we write $I - \lim x_k = 0$.

Definition 1.18. A sequence $x = (x_k) \in \omega$ is said to be *I*-cauchy if for every $\epsilon > 0$ there exists a number $m = m(\epsilon)$ such that $\{k \in N : |x_k - x_m| \ge \epsilon\} \in I$.

Definition 1.19. A sequence $x = (x_k) \in \omega$ is said to be *I*-bounded if there exists some M > 0 such that $\{k \in N : |x_k| \ge M\} \in I$.

Definition 1.20. A sequence space E said to be solid(normal) if $(\alpha_k x_k) \in E$ whenever $(x_k) \in E$ and for any sequence (α_k) of scalars with $|\alpha_k| \leq 1$, for all $k \in \mathbb{N}$.

Definition 1.21. A sequence space E said to be symmetric if $(x_{\pi(k)}) \in E$ whenever $x_k \in E$. where π is a permutation on \mathbb{N}

Definition 1.22. A sequence space E said to be sequence algebra if $(x_k) * (y_k) = (x_k.y_k) \in E$ whenever $(x_k), (y_k) \in E$.

Definition 1.23. A sequence space E said to be convergence free if $(y_k) \in E$ whenever $(x_k) \in E$ and $x_k = 0$ implies $y_k = 0$, for all k.

Definition 1.24. Let $K = \{k_1 < k_2 < k_3 < k_4 < k_5...\} \subset \mathbb{N}$ and E be a Sequence space. A K-step space of E is a sequence space $\lambda_K^E = \{(x_{k_n}) \in \omega : (x_k) \in E\}.$

Definition 1.25. A canonical pre-image of a sequence $(x_{k_n}) \in \lambda_K^E$ is a sequence $(y_k) \in \omega$ defined by

$$y_k = \begin{cases} x_k, & \text{if } k \in K, \\ 0, & \text{otherwise.} \end{cases}$$

A canonical preimage of a step space λ_K^E is a set of preimages all elements in λ_K^E .i.e. y is in the canonical preimage of λ_K^E iff y is the canonical preimage of some $x \in \lambda_K^E$.

Definition 1.26. A sequence space *E* is said to be monotone if it contains the canonical preimages of its step space.

Definition 1.27. If $I = I_f$, the class of all finite subsets of N. Then, I is an admissible ideal in N and I_f convergence coincides with the usual convergence.

Definition 1.28. If $I = I_{\delta} = \{A \subseteq N : \delta(A) = 0\}$. Then, I is an admissible ideal in N and we call the I_{δ} -convergence as the logarithmic statistical convergence.

Definition 1.29. If $I = I_d = \{A \subseteq N : d(A) = 0\}$. Then, I is an admissible ideal in N and we call the I_d -convergence as the asymptotic statistical convergence.

Remark 1.30. If $I_{\delta} - \lim x_n = l$, then $I_d - \lim x_n = l$

The following lemmas remained an important tool for the establishment of some results of this article.

Lemma(I). Every solid space is monotone

Lemma(II). Let $K \in \pounds(I)$ and $M \subseteq N$. If $M \notin I$, then $M \cap K \notin I$.

Lemma(III). If $I \subseteq 2^N$ and $M \subseteq N$. If $M \notin I$, then $M \cap N \notin I$. Khan and K.Ebadullah[18] introduced and studied the following sequence space. For $m \ge 0$

Khan and K.Ebadullah
[18] introduced and studied the following sequence space. For
 $m \geq 0$

$$BV_{\sigma}^{I} = \left\{ x = (x_{k}) \in \omega : \{k \in \mathbb{N} : | \phi_{m.k}(x) - L | \ge \epsilon \} \in I, \text{ for some } L \in \mathbb{C} \right\}.$$
(2.1)

2. Main results

In this article we introduce the following classes of sequence spaces :

For $m \ge 0$

$$BV_{\sigma}^{I}(M,p) = \left\{ x = (x_{k}) \in \omega : \left\{ k \in \mathbb{N} : M\left(\frac{\mid \phi_{m,k}(x) - L \mid}{\rho}\right)^{p_{k}} \ge \epsilon \right\} \in I; \text{ for some } L \in \mathbb{C}, \ \rho > 0 \right\};$$

$$(2.2)$$

$${}_{\circ}BV_{\sigma}^{I}(M,p) = \left\{ x = (x_{k}) \in \omega : \left\{ k \in \mathbb{N} : M\left(\frac{|\phi_{m,k}(x)|}{\rho}\right)^{p_{k}} \ge \epsilon \right\} \in I, \text{ for some } \rho > 0 \right\};$$
(2.3)

$$\ell_{\infty}(M,p) = \left\{ x = (x_k) \in \omega : \sup_{k} M\left(\frac{|\phi_{m,k}(x)|}{\rho}\right)^{p_k} < \infty, \text{ for some } \rho > 0 \right\};$$
(2.4)

$${}_{\infty}BV_{\sigma}^{I}(M,p) = \left\{ x = (x_{k}) \in \omega : \left\{ k \in \mathbb{N} : \exists K > 0, \ M\left(\frac{\mid \phi_{m,k}(x) \mid}{\rho}\right)^{p_{k}} \ge K \right\} \in I, \text{ for some } \rho > 0 \right\}.$$
(2.5)

We also denote

$$\mathcal{M}^{I}_{BV_{\sigma}}(M,p) = BV_{\sigma}^{I}(M,p) \cap \ell_{\infty}(M,p)$$

and

$${}_{0}\mathcal{M}^{I}_{BV_{\sigma}}(M,p) = {}_{0}BV^{I}_{\sigma}(M,p) \cap \ell_{\infty}(M,p)$$

Throughout the article, if required, we denote

 $\phi_{m,k}(x) = x', \phi_{m,k}(y) = y'$ and $\phi_{m,k}(z) = z'$ where x, y, z are $(x_k), (y_k)$ and (z_k) respectively.

Theorem 2.1.Let $p = (p_k) \in l_{\infty}$. For an Orlicz function M, the classes of sequence ${}_{0}BV_{\sigma}^{I}(M,p), BV_{\sigma}^{I}(M,p), {}_{0}\mathcal{M}_{BV_{\sigma}}^{I}(M,p)$ and $\mathcal{M}_{BV_{\sigma}}^{I}(M,p)$ are the linear spaces.

Proof. We shall prove the result for the space $BV_{\sigma}^{I}(M,p)$. Rests will follow similarly.

For, let $x = (x_k), y = (y_k) \in BV_{\sigma}^I(M, p)$ be any two arbitrary elements and let α , β are scalars. Now,since

 $x = (x_k), y = (y_k) \in BV_{\sigma}^I(M, p)$. \Rightarrow For $\epsilon > 0, \exists$ some +ve numbers ρ_1 and ρ_2 such that the sets

$$A_1 = \left\{ k \in \mathbb{N} : M\left(\frac{|x'_k - L_1|}{\rho_1}\right)^{p_k} \ge \frac{\epsilon}{2} \right\} \in I, \text{ for some } L_1 \in \mathbb{C}$$

$$(2.6)$$

and

$$A_2 = \left\{ k \in \mathbb{N} : M\left(\frac{|y'_k - L_2|}{\rho_1}\right)^{p_k} \ge \frac{\epsilon}{2} \right\} \in I, \text{ for some } L_2 \in \mathbb{C}$$

$$(2.7).$$

Let

$$\rho_3 = \max\{2 \mid \alpha \mid \rho_1, 2 \mid \beta \mid \rho_2\}$$
(2.8).

Since, M is non-decreasing and convex, we have,

$$M\left(\frac{|(\alpha x_k'+\beta y_k')-(\alpha L_1+\beta L_2)|}{\rho_3}\right)^{p_k} \le M\left(\frac{|\alpha||x_k'-L_1|}{\rho_3}\right)^{p_k} + M\left(\frac{|\beta||y_k'-L_2|}{\rho_3}\right)^{p_k} \le M\left(\frac{|x_k'-L_1|}{\rho_1}\right)^{p_k} + M\left(\frac{|y_k'-L_2|}{\rho_2}\right)^{p_k}$$

$$(2.9)$$

Therefore, from (2.6), (2.7) and (2.9), we have

$$\left\{k \in \mathbb{N} : M\left(\frac{\mid (\alpha x_k' + \beta y_k') - (\alpha L_1 + \beta L_2) \mid}{\rho_3}\right)^{p_k} \ge \epsilon\right\} \subseteq A_1 \cup A_2 \in I.$$

implies that

$$\left\{k \in \mathbb{N} : M\left(\frac{\mid (\alpha x_k' + \beta y_k') - (\alpha L_1 + \beta L_2) \mid}{\rho_3}\right)^{p_k} \ge \epsilon\right\} \in I$$

Therefore, $\alpha(x_k) + \beta(y_k) \in BV_{\sigma}^{I}(M, p)$ But $x = (x_k), y = (y_k) \in BV_{\sigma}^{I}(M, p)$ are the arbitrary elements Therefore, $\alpha x_k + \beta y_k \in BV_{\sigma}^{I}(M)$, for all $x = (x_k), y = (y_k) \in BV_{\sigma}^{I}(M, p)$ and for all scalars α, β Hence, $BV_{\sigma}^{I}(M, p)$ is linear

Theorem 2.2. Let $p = (p_k) \in l_{\infty}$. For an Orlicz function M, the spaces $\mathcal{M}^I_{BV_{\sigma}}(M, p)$ and ${}_{0}\mathcal{M}^I_{BV_{\sigma}}(M, p)$ are paranormed spaces, paranormed by

$$g(x) = \inf_{k \ge 1} \left\{ \rho^{\frac{p_k}{H}} : \sup_k M\left(\frac{\mid \phi_{m,k}(x) \mid}{\rho}\right)^{p_k} \le 1, \text{ for some } \rho > 0 \right\}$$

where $H = \max\{1, \sup_{k} p_k\}.$

Proof. (PI) Clearly g(x) = 0 if $x = \theta$, (P2) It is obvious that g(-x) = g(x), (P3) Let $x = (x_k)$ and $y = (y_k)$ be two elements in $\mathcal{M}^I_{BV_\sigma}(M, p)$. Now for $\rho_1, \rho_2 > 0$, we denote

$$A_1 = \left\{ \rho_1 : \sup_k M\left(\frac{\mid \phi_{m,k}(x) \mid}{\rho}\right)^{p_k} \le 1 \right\}$$
(2.10)

and

$$A_2 = \left\{ \rho_2 : \sup_k M\left(\frac{\mid \phi_{m,k}(x) \mid}{\rho}\right)^{p_k} \le 1 \right\}$$
(2.11).

Let us take $\rho = \rho_1 + \rho_2$. Then by using the convexity of M, we have

$$M\left(\frac{\mid\phi_{m,k}(x+y)\mid}{\rho}\right) \le \frac{\rho_1}{\rho_1+\rho_2} M\left(\frac{\mid\phi_{m,k}(x)\mid}{\rho_1}\right) + \frac{\rho_2}{\rho_1+\rho_2} M\left(\frac{\mid\phi_{m,k}(y)\mid}{\rho_2}\right)$$

which in terms give us

$$\sup_{k} M\left(\frac{\mid \phi_{m,k}(x+y) \mid}{\rho}\right)^{p_{k}} \le 1$$

and

and

$$g(x+y) = \inf\left\{ (\rho_1 + \rho_2)^{\frac{p_k}{H}} : \rho_1 \in A_1, \ \rho_2 \in A_2 \right\}$$

$$\leq \inf\left\{ (\rho_1)^{\frac{p_k}{H}} : \rho_1 \in A_1 \right\} + \inf\left\{ (\rho_1)^{\frac{p_k}{H}} : \rho_1 \in A_1 \right\}$$

$$= g(x) + g(y).$$

(P4) Let (λ_k) be a sequence of scalars with $\lambda_k \to L$ where $\lambda_k, L \in \mathbb{C}$ and let $(x_k), x \in \mathcal{M}^I_{BV_\sigma}(M, p)$ be such that $g(x_k - x) \to 0$ as $k \to \infty$. To prove that $g(\lambda_k x_k - Lx) \to 0$ as $k \to \infty$. We put

$$A_3 = \left\{ \rho_r > 0 : \sup_k M\left(\frac{|\phi_{m,k}(x_k)|}{\rho_r}\right)^{p_k} \le 1 \right\}$$

$$(2.12)$$

and

$$A_4 = \left\{ \rho_s > 0 : \sup_k M\left(\frac{|\phi_{m,k}(x_k - x)|}{\rho_s}\right)^{p_k} \le 1 \right\}$$

$$(2.13)$$

By convexity and continuity of M, we observe that

$$\begin{split} M\!\left(\frac{|\phi_{m,k}(\lambda_k x_k - Lx)|}{|\lambda_k - L|_{\rho_r} + |L|_{\rho_s}}\right) &\leq M\!\left(\frac{|\phi_{m,k}(\lambda_k x_k - Lx_k)|}{|\lambda_k - L|_{\rho_r} + |L|_{\rho_s}}\right) + M\!\left(\frac{|\phi_{m,k}(Lx_k - Lx)|}{|\lambda_k - L|_{\rho_r} + |L|_{\rho_s}}\right) \\ &\leq \frac{|\lambda_k - L|_{\rho_r}}{|\lambda_k - L|_{\rho_r} + |L|_{\rho_s}}M\!\left(\frac{|\phi_{m,k}(x_k)}{\rho_r}\right) + \frac{|L|_{\rho_s}}{|\lambda_k - L|_{\rho_r} + |L|_{\rho_s}}M\!\left(\frac{|\phi_{m,k}(x_k - x)|}{\rho_r}\right) \\ \text{From the above inequality, it follows that} \end{split}$$

uy,

$$\sup_{k} M\left(\frac{\mid \phi_{m,k}(\lambda_{k}x_{k} - Lx) \mid}{\mid \lambda_{k} - L \mid_{\rho_{r}} + \mid L \mid_{\rho_{s}}}\right)^{p_{k}} \le 1$$

and consequently, we have

$$g(\lambda_{k}x_{k} - Lx) = \inf\left\{ \left(\mid \lambda_{k} - L \mid_{\rho_{r}} + \mid L \mid_{\rho_{s}} \right)^{\frac{p_{k}}{H}} : \rho_{r} \in A_{3}, \rho_{s} \in A_{4} \right\}$$

$$\leq \mid \lambda_{k} - L \mid^{\frac{p_{k}}{H}} \inf\left\{ (\rho_{r})^{\frac{p_{k}}{H}} : \rho_{r} \in A_{3} \right\} + \mid L \mid^{\frac{p_{k}}{H}} \inf\left\{ (\rho_{s})^{\frac{p_{k}}{H}} : \rho_{r} \in A_{4} \right\}$$

$$\leq \max\left\{ 1, \mid \lambda_{k} - L \mid^{\frac{p_{k}}{H}} \right\} g(x_{k}) + \max\left\{ 1, \mid L \mid^{\frac{p_{k}}{H}} \right\} g(x_{k} - x)$$
(2.14)

Notice that $g(x_k) \leq g(x) + g(x_k - x)$ for all $k \in \mathbb{N}$. Hence by our assumption, the right hand side of (2.14) tends

to 0 as $k \to \infty$ and the result follows.

For ${}_{0}\mathcal{M}^{I}_{BV_{\sigma}}(M,p)$, the result is similar and hence omitted.

Theorem 2.3 Let M_1 and M_2 be two Orlicz functions and satisfying Δ_2 – Condition, then (a) $\mathcal{X}(M_2, p) \subseteq \mathcal{X}(M_1M_2, p)$ (b) $\mathcal{X}(M_1, p) \cap (M_2, p) \subseteq \mathcal{X}(M_1 + M_2, p)$ where $\mathcal{X} = {}_0BV_{\sigma}^I$, BV_{σ}^I , ${}_0\mathcal{M}_{BV_{\sigma}}^I$, $\mathcal{M}_{BV_{\sigma}}^I$.

Proof. (a). Let $x = (x_k) \in {}_0BV^I_{\sigma}(M_2)$ be any arbitrary element. Let $\epsilon > 0$ be given $\Rightarrow \exists \rho > 0$ such that

$$\left\{k \in \mathbb{N} : M_2\left(\frac{|\phi_{m,k}(x)|}{\rho}\right)^{p_k} \ge \epsilon\right\} \in I.$$

i.e.

$$\left\{k \in \mathbb{N} : M_2\left(\frac{|x'_k|}{\rho}\right)^{p_k} \ge \epsilon\right\} \in I,$$
(2.15)

Let $\epsilon > 0$ and choose δ with $0 < \delta < 1$ such that $M_1(t) < \epsilon$, for $0 \le t \le \delta$. Let us write $y_k = M_2 \left(\frac{|x'_k|}{\rho}\right)^{p_k}$ and consider

$$\lim_{k} M_1(y_k) = \lim_{y_k \le \delta, k \in \mathbb{N}} M_1(y_k) + \lim_{y_k > \delta, k \in \mathbb{N}} M_1(y_k).$$

Now, since M_1 is an Orlicz function, we have $M_1(\lambda x) \leq \lambda M_1(x)$ for all λ with $0 < \lambda < 1$. Therefore, $\lim_{y_k \leq \delta, k \in \mathbb{N}} M_1(y_k) \leq M_1(2) \lim_{y_k \leq \delta, k \in \mathbb{N}} (y_k)$

For $y_k > \delta$, we have $y_k < \frac{y_k}{\delta} < 1 + \frac{y_k}{\delta}$ Now, since M_1 is non-decreasing and convex, it follows that

$$M_1(y_k) < M_1(1 + \frac{y_k}{\delta}) < \frac{1}{2}M_1(2) + \frac{1}{2}M_1(\frac{2y_k}{\delta})$$

Again, since M_1 satisfies Δ_2 – Condition, we have

$$M_1(y_k) < \frac{1}{2} K \frac{(y_k)}{\delta} M_1(2) + \frac{1}{2} K \frac{(y_k)}{\delta} M_1(2).$$

Thus,

$$M_1(y_k) < K \frac{(y_k)}{\delta} M_1(2).$$

Hence,

$$\lim_{y_k > \delta, k \in \mathbb{N}} M_1(y_k) \le \max\{1, K\delta^{-1}M_1(2) \lim_{y_k > \delta, k \in \mathbb{N}} (y_k).$$
(2.17)

Therefore, from (2.15), (2.16) and (2.17), it follows that

$$\left\{k \in \mathbb{N} : M_1 M_2 \left(\frac{\mid \phi_{m,k}(x) \mid}{\rho}\right)^{p_k} \ge \epsilon\right\} \in I,$$

implies that $x = (x_k) \in {}_0BV_{\sigma}^I(M_1M_2, p)$ Therefore, ${}_0BV_{\sigma}^I(M_2, p) \subseteq {}_0BV_{\sigma}^I(M_1M_2, p)$. Hence, $\mathcal{X}(M_2, p) \subseteq \mathcal{X}(M_1M_2, p)$ for $\mathcal{X} = {}_0BV_{\sigma}^I$ For $\mathcal{X} = BV_{\sigma}^I, \mathcal{X} = {}_0\mathcal{M}_{BV_{\sigma}}^I$ and $\mathcal{X} = \mathcal{M}_{BV_{\sigma}}^I$ the inclusions can be established similarly.

(b). Let $x = (x_k) \in {}_0BV^I_{\sigma}(M_1, p) \cap {}_0BV^I_{\sigma}(M_2, p)$. Let $\epsilon > 0$ be given. Then there exists $\rho > 0$ such that the sets

$$\left\{k \in \mathbb{N} : M_1\left(\frac{\mid \phi_{m,k}(x) \mid}{\rho}\right)^{p_k} \ge \epsilon\right\} \in I,$$

(2.16)

and

$$\left\{k \in \mathbb{N} : M_2\left(\frac{|\phi_{m,k}(x)|}{\rho}\right)^{p_k} \ge \epsilon\right\} \in I,$$
$$\left\{k \in \mathbb{N} : (M_1 + M_2)\left(\frac{|\phi_{m,k}(x)|}{\rho}\right)^{p_k} \ge \epsilon\right\}$$
$$\subseteq \left[\left\{k \in \mathbb{N} : M_1\left(\frac{|\phi_{m,k}(x)|}{\rho}\right)^{p_k} \ge \epsilon\right\}$$
$$\cup \left\{k \in \mathbb{N} : M_2\left(\frac{|\phi_{m,k}(x)|}{\rho}\right)^{p_k} \ge \epsilon\right\}\right]$$

implies that

$$\left\{k \in \mathbb{N} : (M_1 + M_2) \left(\frac{\mid \phi_{m,k}(x) \mid}{\rho}\right)^{p_k} \ge \epsilon\right\} \in I.$$

showing that $x = (x_k) \in {}_0BV_{\sigma}^I(M_1 + M_2, p)$ Hence, ${}_0BV_{\sigma}^I(M_1, p) \cap {}_0BV_{\sigma}^I(M_2, p) \subseteq {}_0BV_{\sigma}^I(M_1 + M_2, p)$ For $\mathcal{X} = BV_{\sigma}^I, \mathcal{X} = {}_0\mathcal{M}_{BV_{\sigma}}^I$ and $\mathcal{X} = \mathcal{M}_{BV_{\sigma}}^I$ the inclusions are similar.

For $M_2(x) = x$ and $M_1(x) = M(x)$, for all $x \in [0, \infty)$, we have the following corollary.

Corollary. $\mathcal{X} \subseteq \mathcal{X}(M, p)$ for $\mathcal{X} = {}_{0}BV_{\sigma}^{I}$, BV_{σ}^{I} , ${}_{0}\mathcal{M}_{BV_{\sigma}}^{I}$ and $\mathcal{M}_{BV_{\sigma}}^{I}$.

Theorem 2.4. For any orlicz function M, the spaces $_{0}BV_{\sigma}^{I}(M,p)$ and $_{0}\mathcal{M}_{BV_{\sigma}}^{I}(M,p)$ are solid and monotone.

Proof. Here we consider ${}_{0}BV_{\sigma}^{I}(M,p)$. For ${}_{0}\mathcal{M}_{BV_{\sigma}}^{I}(M,p)$, the proof shall be similar. For,let $x = (x_{k}) \in {}_{0}BV_{\sigma}^{I}(M,p)$ be any arbitrary element. \Rightarrow For $\epsilon > 0$, $\exists \rho > 0$ with

$$\left\{k \in \mathbb{N} : M\left(\frac{\mid \phi_{m,k}(x) \mid}{\rho}\right)^{p_k} \ge \epsilon\right\} \in I$$

Let(α_k) be a sequence of scalars such that

$$|\alpha_k| \leq 1$$
, for all $k \in \mathbb{N}$.

Now, since M is an Orlicz function We have,

$$M\left(\frac{\mid \alpha_k \phi_{m,k}(x) \mid}{\rho}\right)^{p_k} \leq \mid \alpha_k \mid^{p_k} M\left(\frac{\mid \phi_{m,k}(x) \mid}{\rho}\right)^{p_k} \leq M\left(\frac{\mid \phi_{m,k}(x) \mid}{\rho}\right) p_k.$$

Therefore,

$$\left\{k \in \mathbb{N} : M\left(\frac{\mid \alpha_k \phi_{m,k}(x) \mid}{\rho}\right)^{p_k} \ge \epsilon\right\} \subseteq \left\{k \in \mathbb{N} : M\left(\frac{\mid \phi_{m,k}(x) \mid}{\rho}\right)^{p_k} \ge \epsilon\right\} \in I$$

implies that

$$\left\{k \in \mathbb{N} : M\left(\frac{\mid \alpha_k \phi_{m,k}(x) \mid}{\rho}\right)^{p_k} \ge \epsilon\right\} \in I$$

Thus, $(\alpha_k x_k) \in {}_0BV^I_{\sigma}(M, p)$. Hence ${}_0BV^I_{\sigma}(M, p)$ is solid

Therefore, by lemma(I) $_{0}BV_{\sigma}^{I}(M)$ is monotone. Hence the result.

Theorem 2.5. The spaces $\mathcal{M}^{I}_{BV_{\sigma}}(M,p)$ and ${}_{0}\mathcal{M}^{I}_{BV_{\sigma}}(M,p)$ are not separable.

Proof. By a counter example we prove the result for the space $\mathcal{M}^{I}_{BV_{\sigma}}(M, p)$. For ${}_{0}\mathcal{M}^{I}_{BV_{\sigma}}(M, p)$, the result follows similarly.

Counter Example.

Let A be an infinite subset of increasing natural numbers such that $A \in I$. Let

$$p_k = \begin{cases} 1, \text{if } k \in A, \\ 2, \text{otherwise.} \end{cases}$$

Let $P_0 = \{(x_k) : x_k = 0 \text{ or } 1, \text{ for } k \in M \text{ and } x_k = 0, \text{ otherwise}\}.$

Since A is infinite, so P_0 is uncountable. Consider the class of open balls $B_1 = \{B(z, \frac{1}{2}) : z \in P_0\}$. Let C_1 be an open cover of $\mathcal{M}^I_{BV_{\sigma}}(M, p)$ containing B_1 . Since B_1 is uncountable so C_1 cannot be reduced to a countable subcover for $\mathcal{M}^I_{DV}(M, p)$. Thus A

Since B_1 is uncountable, so C_1 cannot be reduced to a countable subcover for $\mathcal{M}^I_{BV_\sigma}(M,p)$. Thus $\mathcal{M}^I_{BV_\sigma}(M,p)$ is not separable.

Theorem 2.6. Let $H = \sup p_k < \infty$ and I an admissible ideal. Then the following are equivalent.

(a) $x = (x_k) \in BV_{\sigma}^{I}(M, p)$; (b) there exists $y = (y_k) \in BV_{\sigma}(M, p)$ such that $x_k = y_k$, for a.a.k.r.I; (c) there exists $y = (y_k) \in BV_{\sigma}(M, p)$ and $z = (z_k) \in {}_{0}BV_{\sigma}^{I}(M, p)$ such that $x_k = y_k + z_k$ for all $k \in \mathbb{N}$ and $\left\{k \in \mathbb{N} : M\left(\frac{|y'_k - L|}{\rho}\right)^{p_k} \ge \epsilon\right\} \in I$; (d) there exists a subset $K = \{k_1 < k_2...\}$ of \mathbb{N} such that $K \in \mathcal{L}(I)$ and $\lim_{n \to \infty} M\left(\frac{|x'_{k_n} - L|}{\rho}\right)^{p_{k_n}} = 0.$

Proof. (a) implies (b). Let $x = (x_k) \in BV_{\sigma}^I(M, p)$. Then there exists $L \in \mathbb{C}$ such that

$$\left\{k \in \mathbb{N} : M\left(\frac{|x'_k - L|}{\rho}\right)^{p_k} \ge \epsilon\right\} \in I.$$

Let (m_t) be an increasing sequence with $m_t \in \mathbb{N}$ such that

$$\left\{k \le m_t : M\left(\frac{|x'_k - L|}{\rho}\right)^{p_k} \ge t^{-1}\right\} \in I.$$

Define a sequence (y_k) as

$$y_k = x_k$$
, for all $k \le m_1$.

For $m_t < k \le m_{t+1}, t \in \mathbb{N}$.

$$y_k = \begin{cases} x_k, & \text{if } M\left(\frac{|x'_k - L|}{\rho}\right)^{p_k} < t^{-1} \\ & \text{L, otherwise.} \end{cases}$$

Then $y = (y_k) \in BV_{\sigma}(M, p)$ and form the following inclusion

$$\left\{k \le m_t : x_k \neq y_k\right\} \subseteq \left\{k \le m_t : M\left(\frac{|x'_k - L|}{\rho}\right)^{p_k} \ge \epsilon\right\} \in I.$$

We get $x_k = y_k$, for a.a.k.r.*I*.

(b) implies (c). For $(x_k) \in BV_{\sigma}^I(M, p)$. Then there exists $(y_k) \in BV_{\sigma}(M, p)$ such that $x_k = y_k$, for a.a.k.r.*I*. Let $K = \{k \in \mathbb{N} : x_k \neq y_k\}$, then $K \in I$. Define a sequence (z_k) as

 $z_k = \begin{cases} x_k - y_k, & \text{if } k \in K, \\ 0, otherwise. \end{cases}$

Then $z_k \in {}_0BV^I_{\sigma}(M, p)$ and $y_k \in BV_{\sigma}(M, p)$.

(c) implies (d). Suppose (c) holds. Let $\epsilon > 0$ be given. Let $P_1 = \{k \in \mathbb{N} : M\left(\frac{|x'_{k_n} - L|}{\rho}\right)^{p_k} \ge \epsilon\} \in I$ and $K = P_1^c = \{k_1 < k_2 < k_3 < \dots\} \in \mathcal{L}(I).$

Then, we have $\lim_{n\to\infty} M\left(\frac{|x'_{k_n}-L|}{\rho}\right)^{p_{k_n}} = 0.$

(d) implies (a). Let $K = \{k_1 < k_2 < k_3 < ...\} \in \mathcal{L}(I)$ and $\lim_{n \to \infty} M\left(\frac{|x'_{k_n} - L|}{\rho}\right)^{p_{k_n}} = 0$. Then, for any $\epsilon > 0$, and Lemma (II), we have

$$\left\{k \in \mathbb{N} : M\left(\frac{|x'_k - L|}{\rho}\right)^{p_k} \ge \epsilon\right\} \subseteq K^c \cup \left\{k \in \mathbb{N} : M\left(\frac{|x'_{k_n} - L|}{\rho}\right)^{p_{k_n}} \ge \epsilon\right\} \in I$$

implies that

$$\left\{k \in \mathbb{N} : M\left(\frac{|x'_k - L|}{\rho}\right)^{p_k} \ge \epsilon\right\} \in I$$

Therefore, $(x_k) \in BV_{\sigma}^I(M, p)$. Hence the result.

Theorem 2.7. Let $h = \inf_{k} p_k$ and $H = \sup_{k} p_k$. Then, the following results are equivalent. (a) $H < \infty$ and h > 0. (b) $_0 BV_{\sigma}^I(M, p) = BV_{\circ\sigma}^I$.

Proof. Suppose that $H < \infty$ and h > 0, then the inequalities $min\{1, s^h\} \le s^{p_k} \le max\{1, s^H\}$ hold for any s > 0 and for all $k \in \mathbb{N}$. Therefore the equivalent of (a) and (b) is obvious.

Theorem 2.8. Let $p = (q_k)$ and $q = (q_k)$ be two sequences of positive real numbers. Then ${}_{0}\mathcal{M}^{I}_{BV_{\sigma}}(M,p) \supseteq {}_{0}\mathcal{M}^{I}_{BV_{\sigma}}(M,q)$ if and only if $\liminf_{k \in K} \inf_{q_k} p_k > 0$, where $K^c \subseteq \mathbb{N}$ such that $K \in I$.

Proof. Let $\liminf_{k \in K} \frac{p_k}{q_k} > 0$. and $(x_k) \in {}_0\mathcal{M}^I_{BV_{\sigma}}(M, p)$. Then, there exists $\beta > 0$ such that $p_k > \beta q_k$, for all sufficiently large $k \in K$. Since $(x_k) \in {}_0\mathcal{M}^I_{BV_{\sigma}}(M, p)$. For a given $\epsilon > 0$, $\exists \rho > 0$ such that

$$B_0 = \left\{ k \in \mathbb{N} : M\left(\frac{|x'_k|}{\rho}\right)^{p_k} \ge \epsilon \right\} \in I.$$

Let $G_0 = K^c \cup B_0$ Then $G_0 \in I$. Then, for all sufficiently large $k \in G_0$,

$$\left\{k \in \mathbb{N} : M\left(\frac{|x'_k|}{\rho}\right)^{p_k} \ge \epsilon\right\} \subseteq \left\{k \in \mathbb{N} : \left\{k \in \mathbb{N} : M\left(\frac{|x'_k|}{\rho}\right)^{\beta q_k} \ge \epsilon\right\} \in I.$$

implies that

$$\left\{k \in \mathbb{N} : M\left(\frac{|x'_k|}{\rho}\right)^{p_k} \ge \epsilon\right\} \in I$$

Therefore $(x_k) \in {}_0\mathcal{M}^I_{BV_\sigma}(M, p).$

Converse part of the result follows obviously.

Theorem 2.9. Let $p = (p_k)$ and $q = (q_k)$ be two sequences of positive real numbers. Then

$${}_{0}\mathcal{M}^{I}_{BV_{\sigma}}(M,q) \supseteq {}_{0}\mathcal{M}^{I}_{BV_{\sigma}}(M,p)$$

if and only if $\liminf_{k \in K} \inf \frac{q_k}{p_k} > 0$, where $K^c \subseteq \mathbb{N}$ such that $K \in I$.

Proof. The proof follows similarly as the proof of Theorem 2.8.

Theorem 2.10. Let $p = (p_k)$ and $q = (q_k)$ be two sequences of positive real numbers. Then ${}_0\mathcal{M}^I_{BV_{\sigma}}(M,p) = {}_0\mathcal{M}^I_{BV_{\sigma}}(M,q)$ if and only if $\liminf_{k \in K} \inf \frac{p_k}{q_k} > 0$, and $\liminf_{k \in K} \inf \frac{q_k}{p_k} > 0$, where $K^c \subseteq \mathbb{N}$ such that $K \in I$.

Proof. On combining Theorem 2.9 and 2.10 we get the required result.

Theorem 2.11. The set $\mathcal{M}^{I}_{BV_{\sigma}}(M,p)$ is closed subspace of $\ell_{\infty}(M,p)$.

Proof. Let $(x_k^{(i)})$ be a Cauchy sequence in $\mathcal{M}^I_{BV_\sigma}(M, p)$ such that $x^{(i)} \to x$. We show that $x \in \mathcal{M}^I_{BV_\sigma}(M, p)$

Since $(x_k^{(i)}) \in \mathcal{M}^I_{BV_{\sigma}}(M, p)$, then there exists a sequence a_i and $\rho > 0$ such that

$$\{k \in \mathbb{N} : M\left(\frac{\mid (x_k^{(i)})' - a_i \mid}{\rho}\right)^{p_k} \ge \epsilon\} \in I$$

We need to show that

(1) (a_i) converges to a.

(2) If $U = \{k \in \mathbb{N} : M\left(\frac{|(x_k^{(i)})' - a|}{\rho}\right)^{p_k} < \epsilon\}$, then $U^c \in I$.

(1) Since $(x_k^{(i)})$ is Cauchy sequence in $\mathcal{M}^I_{BV_{\sigma}}(M,p) \Rightarrow$ for a given $\epsilon > 0$, there exists $k_0 \in \mathbb{N}$ such that

$$\sup_{k} M\left(\frac{|(x_{k}^{(i)})' - (x_{k}^{(j)})'|}{\rho}\right)^{p_{k}} < \frac{\epsilon}{3}, \text{ for all } i, j \ge k_{0}.$$

For $\epsilon > 0$, we have

$$B_{ij} = \left\{k \in \mathbb{N} : M\left(\frac{|(x_k^{(i)})' - (x_k^{(j)})'|}{\rho}\right)^{p_k} < \frac{\epsilon}{3}\right\}$$
$$B_i = \left\{k \in \mathbb{N} : M\left(\frac{|(x_k^{(i)})' - a_i|}{\rho}\right)^{p_k} < \frac{\epsilon}{3}\right\}$$
$$B_j = \left\{k \in \mathbb{N} : M\left(\frac{|(x_k^{(j)})' - a_j|}{\rho}\right)^{p_k} < \frac{\epsilon}{3}\right\}$$

Then, $B_{ij}^c, B_i^c, B_j^c \in I$ Let $B^c = B_{ij}^c \cup B_i^c \cup B_j^c$, where $B = \left\{ k \in \mathbb{N} : M\left(\frac{|a_i - a_j|}{\rho}\right)^{p_k} < \epsilon \right\}$. Then, $B^c \in I$. We choose $k_0 \in B^c$. Then for each $i, j \ge k_0$, we have $\left\{ k \in \mathbb{N} : M\left(\frac{|a_i - a_j|}{\rho}\right)^{p_k} < \epsilon \right\} \supseteq \left[\left\{ k \in \mathbb{N} : M\left(\frac{|a_i - a_j|}{\rho}\right)^{p_k} < \frac{\epsilon}{3} \right\}$ $\cap \left\{ k \in \mathbb{N} : M\left(\frac{|(x_k^{(i)})' - a_i|}{\rho}\right)^{p_k} < \frac{\epsilon}{3} \right\}$

$$\cap \left\{ k \in \mathbb{N} : M\left(\frac{\mid a_j - (x_k^{(j)})' \mid}{\rho}\right)^{p_k} < \frac{\epsilon}{3} \right\} \right]$$

implies that

 (a_i) is a Cauchy sequence of scalars in C, so there exists a scalar a in C such that $a_i \to a$, as $n \to \infty$. (2) Let $0 < \delta < 1$ be given. Then we show that if

 $U = \{k \in \mathbb{N} : M\left(\frac{|(x_k^{(i)})' - a|}{\rho}\right)^{p_k} \le \epsilon\}, \text{ then } U^c \in I.$ Since $x^{(i)} \to x$, then there exists $q_0 \in \mathbb{N}$ such that

$$P = \left\{ k \in \mathbb{N} : M\left(\frac{\mid (x_k^{(q_0)})' - x_k' \mid}{\rho}\right)^{p_k} < \left(\frac{\delta}{3D}\right)^H \right\}$$
(2.21)

where $D = \max\{1, 2^{G-1}\}, G = \sup_{k} p_k \ge 0$ and $H = \max\{1, \sup_{k} p_k\}$ implies $P^c \in I$.

The number q_0 can be chosen that together with (2.21), we have

$$Q = \left\{ k \in \mathbb{N} : M\left(\frac{|a_{q_0} - a|}{\rho}\right)^{p_k} < \left(\frac{\delta}{3D}\right)^H \right\}$$

such that $Q^c \in I$. Since

$$\left\{k \in \mathbb{N} : M\left(\frac{\mid (x_k^{(q_0)})' - a_{q_0} \mid}{\rho}\right)^{p_k} \ge \delta\right\} \in I.$$

Then, we have a subset S of \mathbb{N} such that $S^c \in I$, where

$$S = \left\{ k \in \mathbb{N} : M\left(\frac{|(x_k^{(q_0)})' - a_{q_0}|}{\rho}\right)^{p_k} < (\frac{\delta}{3D})^H \right\}.$$

Let $U^c = P^c \cup Q^c \cup S^c$, where

$$U = \left\{ k \in \mathbb{N} : M\left(\frac{\mid (x'_k - a \mid)}{\rho}\right)^{p_k} < \delta \right\}$$

Therefore, for each $k \in U^c$, we have

$$\begin{split} \left\{ k \in \mathbb{N} : M\left(\frac{|(x_k'-a|)}{\rho}\right)^{p_k} < \delta \right\} \supseteq \left[\left\{ k \in \mathbb{N} : M\left(\frac{|(x_k'^{(q_0)})' - x_k'|}{\rho}\right)^{p_k} < (\frac{\delta}{3D})^H \right\} \\ & \cap \left\{ k \in \mathbb{N} : M\left(\frac{|a_{q_0} - a|}{\rho}\right)^{p_k} < (\frac{\delta}{3D})^H \right\} \\ & \cap \left\{ k \in \mathbb{N} : M\left(\frac{|(x_k'^{(q_0)})' - a_{q_0}|}{\rho}\right)^{p_k} < (\frac{\delta}{3D})^H \right\} \right]. \end{split}$$

Then the result follows.

Since the inclusions $\mathcal{M}^{I}_{BV_{\sigma}}(M,p) \subset \ell_{\infty}(M,p)$ and ${}_{0}\mathcal{M}^{I}_{BV_{\sigma}}(M,p) \subset \ell_{\infty}(M,p)$ are strict so in view of Theorem (2.11) we have the following result.

Theorem 2.12. The spaces $\mathcal{M}^{I}_{BV_{\sigma}}(M,p)$ and ${}_{0}\mathcal{M}^{I}_{BV_{\sigma}}(M,p)$ are nowhere dense subsets of $\ell_{\infty}(M,p)$.

Theorem 2.13. For an Orlicz function M, the spaces ${}_{0}BV_{\sigma}^{I}(M,p)$ and $BV_{\sigma}^{I}(M,p)$ are sequence algebra.

Proof. Here we consider ${}_{0}BV_{\sigma}^{I}(M,p)$. For the other result the proof is similar. Let $x = (x_k), y = (y_k) \in {}_{0}BV_{\sigma}^{I}(M,p)$ be any two arbitrary elements. $\Rightarrow \exists \rho_1, \rho_2 > 0$ such that

$$\left\{k \in \mathbb{N} : M\left(\frac{|\phi_{m,k}(x)|}{\rho_1} \ge \epsilon\right)^{p_k}\right\} \in I.$$
(2.22)

and

$$\left\{k \in \mathbb{N} : M\left(\frac{|\phi_{m,k}(y)|}{\rho_1} \ge \epsilon\right)^{p_k}\right\} \in I.$$
(2.23)

Let $\rho = \rho_1 \rho_2 > 0$

Then, it is obvious from (2.22) and (2.23) that

$$\left\{k \in \mathbb{N} : M\left(\frac{\mid \phi_{m,k}(x)\phi_{m,k}(y) \mid}{\rho} \ge \epsilon\right)^{p_k}\right\} \in I.$$

which further implies that $(x_k.y_k) = (x_ky_k) \in {}_0BV_{\sigma}^I(M,p)$ Hence, ${}_0BV_{\sigma}^I(M,p)$ is a Sequence algebra.

Theorem 2.11. Let M be an Orlicz function. Then, ${}_{\circ}BVI_{\sigma}(M,p) \subset BVI_{\sigma}(M,p) \subset {}_{\infty}BV_{\sigma}^{I}(M,p)$.

Proof. Let M be an Orlicz function. Then, we have to show that ${}_{0}BV_{\sigma}^{I}(M,p) \subseteq BV_{\sigma}^{I}(M,p) \subseteq {}_{\infty}BV_{\sigma}^{I}(M,p)$ Firstly, ${}_{0}BV_{\sigma}^{I}(M) \subseteq BV_{\sigma}^{I}(M)$ is obvious. Let $x = (x_{k}) \in BV_{\sigma}^{I}(M,p)$. Then there exists $L \in \mathbb{C}$ and $\rho > 0$ such that

$$\left\{k \in \mathbb{N} : M\left(\frac{|x'_k - L|}{\rho}\right)^{p_k} \ge \epsilon\right\} \in I.$$

That is

$$I - \lim M\left(\frac{|x'_k - L|}{\rho}\right)^{p_k} = 0.$$

Therefore, we have

$$M\left(\frac{|x'_k|}{2\rho}\right)^{p_k} \le \frac{1}{2}M\left(\frac{|x'_k - L|}{\rho}\right)^{p_k} + \frac{1}{2}M\left(\frac{|L|}{\rho}\right)^{p_k}.$$

Taking supremum over k both sides, we get $x = (x_k) \in {}_{\infty}BV_{\sigma}^I(M, p)$. Hence, ${}_{\circ}BV_{\sigma}^I(M, p) \subset BV_{\sigma}^I(M, p) \subset {}_{\infty}BV_{\sigma}^I(M, p)$.

Theorem 2.15. If I is not maximal and $I \neq I_f$. Then, the space ${}_0BV_{\sigma}^I(M,p)$ and $BV_{\sigma}^I(M,p)$ are not symmetric.

Proof. Let $A \in I$ be any infinite set and M(x) = x, for all $x \in [0, \infty)$. Define a sequence (x_k) as

$$x_k = \begin{cases} 1, & \text{if } k \in A, \\ 0, & \text{otherwise} \end{cases}$$

Then, it is clear that $(x_k) \in {}_0BV^I_{\sigma}(M,p) \subsetneq BV^I_{\sigma}(M,p)$ Let $K \subseteq \mathbb{N}$ be such that $K \notin I$ and $\mathbb{N} \setminus K \notin I$. Let $\phi: K \to A$ and $\psi: K^c \to A^c$ be bijective maps. Then, the mapping $\pi :\to \mathbb{N} \to \mathbb{N}$ defined by

$$\pi(k) = \begin{cases} \phi(k), & \text{if } k \in K, \\ \psi k, & \text{otherwise} \end{cases}$$

is a permutation on $\mathbb N$

But $(x_{\pi}(k)) \notin BV_{\sigma}^{I}(M,p)$ and hence $(x_{\pi}(k)) \notin {}_{0}BV_{\sigma}^{I}(M,p)$ showing that

$$BV_{\sigma}^{I}(M,p)$$
 and $_{0}BV_{\sigma}^{I}(M,p)$

are not symmetric sequence spaces.

Acknowledgements

The authors would like to record their gratitude to the reviewer for his careful reading and making some useful corrections which improved the presentation of the paper.

References

- [1] Z.U.Ahmad, M.Mursaleen : An application of Banach limits. Proc. Amer. Math. soc. 103,244-246,(1983).
- [2] S.Banach: Theorie des operations lineaires, Warszawa. (1932). 103, 244-246 (1986).
- [3] V. K. Bhardwaj and N., Singh: Some sequence spaces defined by Orlicz functions. Demonstratio Math. 33(3) (2000) 571582.
- [4] K. Demirci : I-limit superior and limit inferior. Math. Commun., 6:165-172(2001).
- [5] A. Esi: Some new sequence spaces defined by Orlicz functions, Bull. Inst. Math. Acad. Sinica. 27 (1999) 7176.
- [6] H.Fast: Sur la convergence statistique, Colloq. Math. 2(1951), 241-244.
- [7] J.A.Fridy: On statistical convergence, Analysis.5(1985).301-313.
- [8] B. Hazarika et al.: On paranormed Zweier ideal convergent sequence spaces defined By Orlicz function., Journal of the Egyptian Mathematical Society (2013), http://dx.doi.org/10.1016/j.joems.2013.08.005
- [9] P.K.Kamthan and M.Gupta : Sequence spaces and series. Marcel Dekker Inc, New York. (1980).
- [10] V.A. Khan : On a new sequence space defined by Orlicz Functions. Commun.Fac.Sci Univ.Ank.Series A1.57,25-33,(2008).
- [11] V.A. Khan, K. Ebadullah, A.Esi, N. Khan, M. Shafiq: On paranorm Zweier I-convergent sequences spaces, Journal of Mathematics (Hindawi Publishing Corporation) Volume 2013 (2013), Article ID 613501, 6 pages
- [12] V.A Khan and K.Ebadullah: On some new I-convergent sequence space., Mathematics, Aeterna, Vol.3 No.2151-159(2013).
- [13] V.A.Khan and K. Ebadullah, K.: On a new I-convergent sequence space. Analysis, 32, 199-208(2012).
- [14] J.P.King : Almost summable Sequences. Proc. Amer. Math. soc. 17, 1219-1225, (1966).
- [15] P.Kostyrko, M. Mačaj and T.Šalát : Statistical convergence and I-convergence. Real Analysis Exchange.
- [16] P.Kostyrko, T.Šalát and W.Wilczyński : I-convergence, Raal Analysis Analysis Exchange. 26(2), 669-686 (2000).
- [17] C.G.Lascarides: On the equivalence of certain sets of sequences, Indian J. Math. 25(1983),41-52.
- [18] J. Lindenstrauss and L. Tzafriri: On Orlicz sequence spaces, Israel J. Math. 101(1971) 379390.
- [19] G.G. Lorentz,: A contribution to the theory of divergent series. Acta Math., 80: 167-190(1948).
- [20] I.J.Maddox,: Elements of Functional Analysis, Cambridge University Press. (1970)
- [21] I.J. Maddox : Paranormed sequence spaces generated by infinite matrices., Math. Proc. Cambridge Philos. Soc. 64 (1968) 335340
- [22] M.Mursaleen: Matrix transformation between some new sequence spaces. Houston J. Math., 9: 505-509(1983).
- [23] M. Mursaleen: On some new invariant matrix methods of summability. Quart. J. Math. Oxford, (2)34: 77-86(1983).

- [24] H. Nakano: Modular sequence spaces., Proc. Jpn. Acad. Ser. A Math. Sci. 27 (1951) 508512.
- S.D.Parshar and B.Choudhary: Sequence Spaces Defined by Orlicz function. Indian J, Pure Appl. Math. 25.419-428(1994) spaces. Math. Vesnik. 49 (1997) 187196.
- [26] R.A.Raimi: Invariant means and invariant matrix methods of summability. Duke J. Math., 30: 81-94(1963).
- [27] T.Šalát, B.C. Tripathy and M.Ziman: On some properties of I-convergence. Tatra Mt. Math. Publ., 28: 279-286(2004).
- [28] T.Šalát B.C.Tripathy and M.Ziman: On I-convergence field. Ital.J.Pure Appl. Math., 17: 45-54(2005).
- [29] P.Schafer: Infinite matrices and Invariant means. Proc. Amer. Math. soc. 36, 104-110, (1972).
- [30] B.C.Tripathy and B.Hazarika: Paranorm I-convergent sequence spaces. Math. Slovaca.59(4):485-494(2009).
- [31] B.C. Tripathy, B. Hazarika: I-convergent sequence spaces associated with multiplier sequences, Math. Ineq. Appl. 11 (3) (2008) 543548.
- [32] B.C.Tripathy and B.Hazarika: Some I-Convergent sequence spaces defined by Orlicz function., Acta Mathematicae Applicatae Sinica.27(1)149-154.(2011)