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Abstract

In this article we introduce and study 0BV I
σ (M,p), BV I

σ (M,p) and ∞BV I
σ (M,p) sequence spaces where p = (pk)

is the sequence of strictly positive real numbers with the help of BVσ space [see [23]] and an Orlicz function M .
We study some topological and algebraic properties and decompostion theorem. Further we prove some inclusion
relations related to these new spaces.
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1. Introduction

Let N, R and C be the sets of all natural, real and complex numbers respectively.
We denote

ω = {x = (xk) : xk ∈ R or C}
the space of all real or complex sequences.

Let `∞, c and c0 denote the Banach spaces of bounded, convergent and null sequences respectively with norm

‖x‖ = sup
k
| xk |

Let v denote the space of sequences of bounded variation. That is,

v =
{

x = (xk) :
∞∑

k=o

| xk − xk−1 |< ∞ = 0
}

(1.1)

v is a Banach Space normed by

‖x‖ =
∞∑

k=0

| xk − xk−1 | (see[23])

Let σ be a mapping of the set of the positive integers into itself having no finite orbits. A continuous linear
functional φ on `∞ is said to be an invariant mean or σ-mean if and only if
(i) φ(x) ≥ 0 where the sequence x = (xk) has xk ≥ 0 for all k.
(ii) φ(e) = 1 where e = {1, 1, 1, ...},
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(iii) φ(xσ(n)) = φ(x) for all x ∈ `∞

If x = (xk), write Tx = (Txk) = (xσ(k)). It can be shown that

Vσ =

{
x = (xk) : lim

m→∞
tm,k(x) = L uniformly in k, L = σ − limx

}
(1.2)

where m ≥ 0, k > 0.

tm,k(x) =
xk + xσ(k)... + xσm(k)

m + 1
and t−1, k = 0 (1.3)

where σm(k) denote the m-th iterate of σ(k) at k. In case σ is the translation mapping, that is, σ(k)=k+1, σ-mean
is called a Banach limit(see,[2]) and Vσ, the set of bounded sequences of all whose invariant means are equal, is the
set of almost convergent sequences. The special case of (1.2) in which σ(n)=n+1 was given by Lorentz[19, Theorem
1], and that the general result can be proved in a similar way. It is familiar that a Banach limit extends the limit
functional on c (see,[19]) in the sense that

φ(x) = lim x, for all x ∈ c (1.4),

Remark 1.1. In view of above discussion we have c ⊂ Vσ.

Theorem 1.2. [23,Theorem 1.1] A σ-mean extends the limit functional on c in the sense that φ(x) = lim x for all
x ∈ c if and only if σ has no finite orbits. That is, if and only if for all k ≥ 0, j ≥ 1, σj(k) 6= k
Put

φm,k(x) = tm,k(x)− tm−1,k(x) (1.5)

assuming that t−1, k = 0

A straight forward calculation shows that (see[22])

φm,k(x) =





1
m(m+1)

m∑
j=1

j(xj
σ(k)− xj−1

σ (k)), if(m ≥ 1),

xk if(m = 0)
(1.6)

For any sequence x, y and scalar λ, we have

φm,k(x + y) = φm,k(x) + φm,k(y)

and
φm,k(λx) = λφm,k(x).

Definition 1.3. A sequence x ∈ `∞ is of σ-bounded variation if and only if

(i)
∞∑

m=0
| φm,k(x) | converges uniformly in k.

(ii) lim
m→∞

tm,k(x), which must exist, should take the same value for all k.

Subsequently invariant means have been studied by Ahmad and Mursaleen [23,1,22], J.P.King [14],Raimi [26],
Khan and Ebadullah [12,13] and many others. Mursaleen [23] defined the sequence space BVσ, the space of all
sequence of σ -bounded variation as

BVσ = {x ∈ `∞ :
∑
m

| φm,k(x) |< ∞, uniformly in k}
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Theorem 1.4. BVσ is a Banach space normed by

‖ x ‖= sup
k

∑
| φm,k(x) | (c.f.[23], [26], [29], [22])

Definition 1.5. A function M : [0,∞) → [0,∞) is said to be an Orlicz function if it satisfies the following condi-
tions
(i) M is continuous, convex and non-decreasing
(ii) M(0) = 0,M(x) > 0 and M(x) →∞ as x →∞

Remark 1.6. If the convexity of an Orlicz function is replaced by M(x + y) ≤ M(x) + M(y), then this function is
called modulus function.

Remark 1.7. If M is an Orlicz function, then M(λx) ≤ λM(x) for all λ with 0 < λ < 1.

An Orlicz function M is said to satisfy ∆2 − Condition for all values of u if there exists a constant K > 0 such
that M(Lu) ≤ KLM(u) for all values of L > 1.

Lindenstrauss and Tzafriri[18] used the idea of an Orlicz function to construct the sequence space

`M =
{
x ∈ ω :

∞∑

k=1

M(
| xk |

ρ
) < ∞, for some ρ > 0

}
. (1.7)

The space `M becomes a Banach space with the norm

‖ x ‖= inf
{

ρ > 0 :
∞∑

k=1

M(
| xk |

ρ
) ≤ 1

}
(1.8)

which is called an Orlicz sequence space. The space `M is closely related to the space `p which is an Orlicz sequence
space with M(t) = tP for 1 < p < ∞.

Later on some Orlicz sequence spaces were investigated by Parashar and Choudhury [25], Maddox [20],Khan [10],
Kamthan and Gupta [9],Bhardwaj and Singh [3], and many others.

Definition 1.8. Let X be a linear space. A function g : X −→ R is called paranorm, if for all x, y ∈ X,
(PI) g(x) = 0 if x = θ,
(P2) g(−x) = g(x),
(P3) g(x + y) ≤ g(x) + g(y),
(P4) If (λn) is a sequence of scalars with λn → λ (n →∞) and xn, a ∈ X with xn → a (n →∞) in the sense that
g(xn − a) → 0 (n →∞) , then g(λnxn − λa) → 0 (n →∞).

The concept of paranorm is closely related to linear metric spaces. It is a generalization of that of absolute
value(see,[21]). The notion of paranormed sequence space was studied at the initial stage by Nakano[24]. Later
on, it was further investigated by Maddox[20,21], Lascarides[17], Tripathy[30] and many others. A paranorm g for
which g(x) = 0 implies x = θ is called a total paranorm on X, and the pair (X, g) is called a totally paranormed
space.

Initially, as a generalization of statistical convergence[6,7], the notation of ideal convergence (I-convergence) was
introduced and studied by Kostyrko, Mačaj, Salǎt and Wilczyńki ([15,16]). Later on, it was studied by Šalát and
Tripathy [30], Hazarika [8,32], Khan and Ebadullah [11,12,13],Demirci [4] and many others.

Here we give some important definitions.

Definition 1.9. A sequence x=(xk) ∈ ω is said to be statistically convergent to a limit L ∈ C if for every ε > 0,
we have

lim
k

1
k
|{n ∈ N : |xk − L| ≥ ε, n ≤ k}| = 0
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where vertical lines denote the cardinality of the enclosed set.

Definition 1.10. Let N be a non empty set. Then a family of sets I ⊆ 2N (power set of N) is said to be an ideal if
1) I is additive i.e ∀A,B ∈ I ⇒ A ∪B ∈ I
2) I is hereditary i.e ∀A ∈ Iand B ⊆ A ⇒ B ∈ I.

Definition 1.11. A non-empty family of sets £(I) ⊆ 2N is said to be filter on N if and only if
1) Φ /∈ £(I),
2) ∀ A, B ∈ £(I) we have A ∩B ∈ £(I),
3) ∀ A ∈ £(I)and A ⊆ B ⇒ B ∈ £(I).

Definition 1.12. An Ideal I ⊆ 2N is called non-trivial if I 6= 2N .

Definition 1.13. A non-trivial ideal I ⊆ 2N is called admissible if {{x} : x ∈ N} ⊆ I.

Definition 1.14. A non-trivial ideal I is maximal if there cannot exist any non-trivial ideal J 6= I containing I as
a subset.

Remark 1.15. For each ideal I, there is a filter £(I) corresponding to I.
i.e £(I) = {K ⊆ N : Kc ∈ I}, where Kc = N \K.

Definition 1.16. A sequence x = (xk) ∈ ω is said to be I-convergent to a number L if for every ε > 0, the set
{k ∈ N : |xk − L| ≥ ε} ∈ I.
In this case, we write I − lim xk = L.

Definition 1.17. A sequence x = (xk) ∈ ω is said to be I-null if L = 0. In this case, we write I − limxk = 0.

Definition 1.18. A sequence x = (xk) ∈ ω is said to be I-cauchy if for every ε > 0 there exists a number m = m(ε)
such that {k ∈ N : |xk − xm| ≥ ε} ∈ I.

Definition 1.19. A sequence x = (xk) ∈ ω is said to be I-bounded if there exists some M > 0 such that
{k ∈ N : |xk| ≥ M} ∈ I.

Definition 1.20. A sequence space E said to be solid(normal) if (αkxk) ∈ E whenever (xk) ∈ E and for any
sequence(αk) of scalars with | αk |≤ 1, for all k ∈ N.

Definition 1.21. A sequence space E said to be symmetric if (xπ(k)) ∈ E whenever xk ∈ E. where π is a permu-
tation on N

Definition 1.22. A sequence space E said to be sequence algebra if (xk) ∗ (yk) = (xk.yk) ∈ E whenever
(xk), (yk) ∈ E.

Definition 1.23. A sequence space E said to be convergence free if (yk) ∈ E whenever (xk) ∈ E and xk = 0
implies yk = 0, for all k.

Definition 1.24. Let K = {k1 < k2 < k3 < k4 < k5...} ⊂ N and E be a Sequence space.A K-step space of E is a
sequence space λE

K = {(xkn) ∈ ω : (xk) ∈ E}.

Definition 1.25. A canonical pre-image of a sequence (xkn) ∈ λE
K is a sequence (yk) ∈ ω defined by

yk =
{

xk, if k ∈ K,
0, otherwise.

A canonical preimage of a step space λE
K is a set of preimages all elements in λE

K .i.e. y is in the canonical preimage
of λE

K iff y is the canonical preimage of some x ∈ λE
K .
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Definition 1.26. A sequence space E is said to be monotone if it contains the canonical preimages of its step space.

Definition 1.27. If I = If , the class of all finite subsets of N . Then, I is an admissible ideal in N and If

convergence coincides with the usual convergence.

Definition 1.28. If I = Iδ = {A ⊆ N : δ(A) = 0}. Then, I is an admissible ideal in N and we call the Iδ-
convergence as the logarithmic statistical convergence.

Definition 1.29. If I = Id = {A ⊆ N : d(A) = 0}. Then, I is an admissible ideal in N and we call the Id-
convergence as the asymptotic statistical convergence.

Remark 1.30. If Iδ − lim xn = l, then Id − limxn = l

The following lemmas remained an important tool for the establishment of some results of this
article.

Lemma(I). Every solid space is monotone

Lemma(II). Let K ∈ £(I) and M ⊆ N . If M /∈ I, then M ∩K /∈ I.

Lemma(III). If I ⊆ 2N and M ⊆ N . If M /∈ I, then M ∩N /∈ I.
Khan and K.Ebadullah[18] introduced and studied the following sequence space.
For m ≥ 0

Khan and K.Ebadullah[18] introduced and studied the following sequence space.
For m ≥ 0

BV I
σ =

{
x = (xk) ∈ ω : {k ∈ N :| φm.k(x)− L |≥ ε} ∈ I, for some L ∈ C

}
. (2.1)

2. Main results

In this article we introduce the following classes of sequence spaces :

For m ≥ 0

BV I
σ (M, p) =

{
x = (xk) ∈ ω :

{
k ∈ N : M

(
| φm,k(x)− L |

ρ

)pk

≥ ε

}
∈ I; for some L ∈ C, ρ > 0

}
;

(2.2)

◦BV I
σ (M, p) =

{
x = (xk) ∈ ω :

{
k ∈ N : M

(
| φm,k(x) |

ρ

)pk

≥ ε

}
∈ I, for some ρ > 0

}
; (2.3)

`∞(M, p) =

{
x = (xk) ∈ ω : sup

k
M

(
| φm,k(x) |

ρ

)pk

< ∞, for some ρ > 0

}
; (2.4)

∞BV I
σ (M, p) =

{
x = (xk) ∈ ω :

{
k ∈ N : ∃K > 0, M

(
| φm,k(x) |

ρ

)pk

≥ K

}
∈ I, for some ρ > 0

}
. (2.5)

We also denote

MI
BVσ

(M,p) = BV I
σ (M, p) ∩ `∞(M,p)

and

0MI
BVσ

(M, p) = 0BV I
σ (M,p) ∩ `∞(M, p).
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Throughout the article, if required, we denote
φm,k(x)=x

′
, φm,k(y)=y

′
and φm,k(z)=z

′
where x, y, z are (xk), (yk) and (zk) respectively.

Theorem 2.1.Let p = (pk) ∈ l∞. For an Orlicz function M, the classes of sequence 0BV I
σ (M,p), BV I

σ (M, p),
0MI

BVσ
(M, p) and MI

BVσ
(M,p) are the linear spaces.

Proof. We shall prove the result for the space BV I
σ (M,p). Rests will follow similarly.

For, let x = (xk), y = (yk) ∈ BV I
σ (M, p) be any two arbitrary elements and let α, β are scalars.

Now,since
x = (xk), y = (yk) ∈ BV I

σ (M, p). ⇒ For ε > 0, ∃ some +ve numbers ρ1 and ρ2 such that
the sets

A1 =

{
k ∈ N : M

(
| x′k − L1 |

ρ1

)pk

≥ ε

2

}
∈ I, for some L1 ∈ C (2.6)

and

A2 =

{
k ∈ N : M

(
| y′k − L2 |

ρ1

)pk

≥ ε

2

}
∈ I, for some L2 ∈ C (2.7).

Let
ρ3 = max{2 | α | ρ1, 2 | β | ρ2} (2.8).

Since, M is non-decreasing and convex, we have,

M

(
|(αx′k+βy′k)−(αL1+βL2)|

ρ3

)pk

≤ M

(
|α||x′k−L1|

ρ3

)pk

+ M

(
|β||y′k−L2|

ρ3

)pk

≤ M

(
|x′k−L1|

ρ1

)pk

+ M

(
|y′k−L2|

ρ2

)pk

(2.9)

Therefore, from (2.6), (2.7) and (2.9), we have
{

k ∈ N : M

(
| (αx′k + βy′k)− (αL1 + βL2) |

ρ3

)pk

≥ ε

}
⊆ A1 ∪A2 ∈ I.

implies that
{

k ∈ N : M

(
| (αx′k + βy′k)− (αL1 + βL2) |

ρ3

)pk

≥ ε

}
∈ I

Therefore, α(xk) + β(yk) ∈ BV I
σ (M, p)

But x = (xk), y = (yk) ∈ BV I
σ (M, p) are the arbitrary elements

Therefore, αxk + βyk ∈ BV I
σ (M), for all x = (xk), y = (yk) ∈ BV I

σ (M, p) and for all scalars α, β
Hence, BV I

σ (M,p) is linear

Theorem 2.2. Let p = (pk) ∈ l∞. For an Orlicz function M, the spaces MI
BVσ

(M, p) and 0MI
BVσ

(M, p) are
paranormed spaces, paranormed by

g(x) = inf
k≥1

{
ρ

pk
H : sup

k
M

(
| φm,k(x) |

ρ

)pk

≤ 1, for some ρ > 0

}

where H = max{1, sup
k

pk}.

Proof. (PI) Clearly g(x) = 0 if x = θ,
(P2) It is obvious that g(−x) = g(x),
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(P3) Let x = (xk) and y = (yk) be two elements in MI
BVσ

(M,p). Now for ρ1, ρ2 > 0, we denote

A1 =
{

ρ1 : sup
k

M

(
| φm,k(x) |

ρ

)pk

≤ 1
}

(2.10)

and

A2 =
{

ρ2 : sup
k

M

(
| φm,k(x) |

ρ

)pk

≤ 1
}

(2.11).

Let us take ρ = ρ1 + ρ2. Then by using the convexity of M , we have

M

(
| φm,k(x + y) |

ρ

)
≤ ρ1

ρ1 + ρ2
M

(
| φm,k(x) |

ρ1

)
+

ρ2

ρ1 + ρ2
M

(
| φm,k(y) |

ρ2

)

which in terms give us

sup
k

M

(
| φm,k(x + y) |

ρ

)pk

≤ 1

and

g(x + y) = inf
{

(ρ1 + ρ2)
pk
H : ρ1 ∈ A1, ρ2 ∈ A2

}

≤ inf
{

(ρ1)
pk
H : ρ1 ∈ A1

}
+ inf

{
(ρ1)

pk
H : ρ1 ∈ A1

}

= g(x) + g(y).
(P4) Let (λk) be a sequence of scalars with λk → L where λk, L ∈ C and let (xk), x ∈ MI

BVσ
(M, p) be such that

g(xk − x) → 0 as k →∞. To prove that g(λkxk − Lx) → 0 as k →∞.
We put

A3 =
{

ρr > 0 : sup
k

M

(
| φm,k(xk) |

ρr

)pk

≤ 1
}

(2.12)

and

A4 =
{

ρs > 0 : sup
k

M

(
| φm,k(xk − x) |

ρs

)pk

≤ 1
}

(2.13)

By convexity and continuity of M , we observe that

M

(
|φm,k(λkxk−Lx)|
|λk−L|ρr +|L|ρs

)
≤ M

(
|φm,k(λkxk−Lxk)|
|λk−L|ρr +|L|ρs

)
+ M

(
|φm,k(Lxk−Lx)|
|λk−L|ρr +|L|ρs

)

≤ |λk−L|ρr

|λk−L|ρr +|L|ρs
M

(
|φm,k(xk)

ρr

)
+ |L|ρs

|λk−L|ρr +|L|ρs
M

(
|φm,k(xk−x)|

ρr

)

From the above inequality, it follows that

sup
k

M

(
| φm,k(λkxk − Lx) |
| λk − L |ρr + | L |ρs

)pk

≤ 1

and consequently, we have

g(λkxk − Lx) = inf
{(

| λk − L |ρr + | L |ρs

) pk
H

: ρr ∈ A3, ρs ∈ A4

}

≤| λk − L | pk
H inf

{
(ρr)pk

H : ρr ∈ A3

}
+ | L | pk

H inf
{

(ρs)pk

H : ρr ∈ A4

}

≤ max
{

1, | λk − L | pk
H

}
g(xk) + max

{
1, | L | pk

H

}
g(xk − x)

(2.14)

Notice that g(xk) ≤ g(x) + g(xk − x) for all k ∈ N. Hence by our assumption, the right hand side of (2.14) tends
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to 0 as k →∞ and the result follows.
For 0MI

BVσ
(M,p), the result is similar and hence omitted.

Theorem 2.3 Let M1 and M2 be two Orlicz functions and satisfying ∆2 − Condition, then
(a) X (M2, p) ⊆ X (M1M2, p)
(b) X (M1, p) ∩ (M2, p) ⊆ X (M1 + M2, p)
where X= 0BV I

σ , BV I
σ , 0MI

BVσ
, MI

BVσ
.

Proof. (a). Let x = (xk) ∈ 0BV I
σ (M2) be any arbitrary element. Let ε > 0 be given⇒ ∃ ρ > 0 such that

{
k ∈ N : M2

(
| φm,k(x) |

ρ

)pk

≥ ε

}
∈ I.

i.e.
{

k ∈ N : M2

(
| x′k |

ρ

)pk

≥ ε

}
∈ I, (2.15).

Let ε > 0 and choose δ with 0 < δ < 1 such that M1(t) < ε, for 0 ≤ t ≤ δ.
Let us write

yk = M2

(
|x′k|

ρ

)pk

and consider
lim

k
M1(yk) = lim

yk≤δ,k∈N
M1(yk) + lim

yk>δ,k∈N
M1(yk).

Now, since M1 is an Orlicz function, we have
M1(λx) ≤ λM1(x) for all λ with 0 < λ < 1.
Therefore, lim

yk≤δ,k∈N
M1(yk) ≤ M1(2) lim

yk≤δ,k∈N
(yk)

(2.16)

For yk > δ, we have yk < yk

δ < 1 + yk

δ
Now, since M1 is non-decreasing and convex, it follows that

M1(yk) < M1(1 +
yk

δ
) <

1
2
M1(2) +

1
2
M1(

2yk

δ
)

Again, since M1 satisfies ∆2 − Condition, we have

M1(yk) <
1
2
K

(yk)
δ

M1(2) +
1
2
K

(yk)
δ

M1(2).

Thus,

M1(yk) < K
(yk)
δ

M1(2).

Hence,
lim

yk>δ,k∈N
M1(yk) ≤ max{1,Kδ−1M1(2) lim

yk>δ,k∈N
(yk). (2.17)

Therefore, from (2.15), (2.16) and (2.17), it follows that
{

k ∈ N : M1M2

( | φm,k(x) |
ρ

)pk

≥ ε

}
∈ I,

implies that x = (xk) ∈ 0BV I
σ (M1M2, p)

Therefore, 0BV I
σ (M2, p) ⊆ 0BV I

σ (M1M2, p). Hence, X (M2, p) ⊆ X (M1M2, p) for X= 0BV I
σ

For X = BV I
σ ,X= 0MI

BVσ
and X = MI

BVσ
the inclusions can be established similarly.

(b). Let x = (xk) ∈ 0BV I
σ (M1, p) ∩ 0BV I

σ (M2, p). Let ε > 0 be given. Then there exists ρ > 0 such that the sets
{

k ∈ N : M1

(
| φm,k(x) |

ρ

)pk

≥ ε

}
∈ I,
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and
{

k ∈ N : M2

(
| φm,k(x) |

ρ

)pk

≥ ε

}
∈ I,

Therefore, the inclusion {
k ∈ N : (M1 + M2)

(
| φm,k(x) |

ρ

)pk

≥ ε

}

⊆
[{

k ∈ N : M1

(
| φm,k(x) |

ρ

)pk

≥ ε

}

∪
{

k ∈ N : M2

(
| φm,k(x) |

ρ

)pk

≥ ε

}]

implies that {
k ∈ N : (M1 + M2)

(
| φm,k(x) |

ρ

)pk

≥ ε

}
∈ I.

showing that x = (xk) ∈ 0BV I
σ (M1 + M2, p)

Hence, 0BV I
σ (M1, p) ∩ 0BV I

σ (M2, p) ⊆ 0BV I
σ (M1 + M2, p)

For X = BV I
σ ,X= 0MI

BVσ
and X = MI

BVσ
the inclusions are similar.

For M2(x) = x and M1(x) = M(x), for all x ∈ [0,∞), we have the following corollary .

Corollary. X ⊆ X (M, p) for X= 0BV I
σ , BV I

σ , 0MI
BVσ

and MI
BVσ

.

Theorem 2.4. For any orlicz function M , the spaces 0BV I
σ (M, p) and 0MI

BVσ
(M, p) are solid and monotone.

Proof. Here we consider 0BV I
σ (M,p). For 0MI

BVσ
(M, p), the proof shall be similar.

For,let x = (xk) ∈ 0BV I
σ (M,p) be any arbitrary element.⇒ For ε > 0, ∃ ρ > 0 with

{
k ∈ N : M

( | φm,k(x) |
ρ

)pk

≥ ε

}
∈ I

Let(αk) be a sequence of scalars such that

| αk |≤ 1, for all k ∈ N.

Now, since M is an Orlicz function
We have,

M

( | αkφm,k(x) |
ρ

)pk

≤| αk |pk M

( | φm,k(x) |
ρ

)pk

≤ M

( | φm,k(x) |
ρ

)
pk.

Therefore, {
k ∈ N : M

( | αkφm,k(x) |
ρ

)pk

≥ ε

}
⊆

{
k ∈ N : M

( | φm.k(x) |
ρ

)pk

≥ ε

}
∈ I

implies that {
k ∈ N : M

( | αkφm,k(x) |
ρ

)pk

≥ ε

}
∈ I

Thus, (αkxk) ∈ 0BV I
σ (M,p).

Hence 0BV I
σ (M, p) is solid

Therefore, by lemma(I) 0BV I
σ (M) is monotone. Hence the result.
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Theorem 2.5. The spaces MI
BVσ

(M, p) and 0MI
BVσ

(M, p) are not seperable.

Proof. By a counter example we prove the result for the space MI
BVσ

(M,p).
For 0MI

BVσ
(M,p), the result follows similarly.

Counter Example.
Let A be an infinite subset of increasing natural numbers such that A ∈ I.
Let

pk =
{

1, if k ∈ A,
2, otherwise.

Let P0 = {(xk) : xk = 0 or 1, for k ∈ M and xk = 0, otherwise}.
Since A is infinite, so P0 is uncountable. Consider the class of open balls B1 = {B(z, 1

2 ) : z ∈ P0}.
Let C1 be an open cover of MI

BVσ
(M,p) containing B1.

Since B1 is uncountable, so C1 cannot be reduced to a countable subcover for MI
BVσ

(M,p). Thus MI
BVσ

(M, p) is
not seperable.

Theorem 2.6. Let H = sup
k

pk < ∞ and I an admissible ideal. Then the following are equivalent.

(a) x = (xk) ∈ BV I
σ (M, p);

(b) there exists y = (yk) ∈ BVσ(M, p) such that xk = yk, for a.a.k.r.I;
(c) there exists y = (yk) ∈ BVσ(M,p) and z = (zk) ∈ 0BV I

σ (M,p) such that xk = yk + zk for all k ∈ N and{
k ∈ N : M

(
|y′k−L|

ρ

)pk

≥ ε

}
∈ I ;

(d) there exists a subset K = {k1 < k2....} of N such that K ∈ £(I)

and lim
n→∞

M

(
|x′kn

−L|
ρ

)pkn

= 0.

Proof. (a) implies (b). Let x = (xk) ∈ BV I
σ (M, p). Then there exists L ∈ C such that

{
k ∈ N : M

( |x′k − L|
ρ

)pk

≥ ε

}
∈ I.

Let (mt) be an increasing sequence with mt ∈ N such that
{

k ≤ mt : M

( |x′k − L|
ρ

)pk

≥ t−1

}
∈ I.

Define a sequence(yk) as
yk = xk, for all k ≤ m1.

For mt < k ≤ mt+1, t ∈ N.

yk =





xk, if M

(
|x′k−L|

ρ

)pk

< t−1

L, otherwise.

Then y = (yk) ∈ BVσ(M,p) and form the following inclusion
{

k ≤ mt : xk 6= yk

}
⊆

{
k ≤ mt : M

( |x′k − L|
ρ

)pk

≥ ε

}
∈ I.

We get xk = yk, for a.a.k.r.I.

(b) implies (c). For (xk) ∈ BV I
σ (M, p). Then there exists (yk) ∈ BVσ(M, p) such that xk = yk, for a.a.k.r.I. Let

K = {k ∈ N : xk 6= yk}, then K ∈ I.
Define a sequence (zk) as

zk =
{

xk − yk, if k ∈ K,
0, otherwise.
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Then zk ∈ 0BV I
σ (M,p) and yk ∈ BVσ(M,p).

(c) implies (d). Suppose (c) holds. Let ε > 0 be given. Let P1 = {k ∈ N : M

(
|x′kn

−L|
ρ

)pk

≥ ε} ∈ I and

K = P c
1 = {k1 < k2 < k3 < ...} ∈ £(I).

Then, we have lim
n→∞

M

(
|x′kn

−L|
ρ

)pkn

= 0.

(d) implies (a). Let K = {k1 < k2 < k3 < ...} ∈ £(I) and lim
n→∞

M

(
|x′kn

−L|
ρ

)pkn

= 0.

Then, for any ε > 0, and Lemma (II), we have
{

k ∈ N : M

( |x′k − L|
ρ

)pk

≥ ε

}
⊆ Kc ∪

{
k ∈ N : M

( |x′kn
− L|
ρ

)pkn

≥ ε

}
∈ I

implies that {
k ∈ N : M

( |x′k − L|
ρ

)pk

≥ ε

}
∈ I

Therefore, (xk) ∈ BV I
σ (M,p).

Hence the result.

Theorem 2.7. Let h = inf
k

pk and H = sup
k

pk. Then, the following results are equivalent. (a) H < ∞ and h > 0.

(b) 0BV I
σ (M,p) = BV I

◦σ.

Proof. Suppose that H < ∞ and h > 0, then the inequalities min{1, sh} ≤ spk ≤ max{1, sH} hold for any s > 0
and for all k ∈ N.
Therefore the equivalent of (a) and (b) is obvious.

Theorem 2.8. Let p = (qk) and q = (qk) be two sequences of positive real numbers. Then 0MI
BVσ

(M, p) ⊇
0MI

BVσ
(M, q) if and only if lim

k∈K
inf pk

qk
> 0, where Kc ⊆ N such that K ∈ I.

Proof. Let lim
k∈K

inf pk

qk
> 0. and (xk) ∈ 0MI

BVσ
(M, p). Then, there exists β > 0 such that pk > βqk, for all

sufficiently large k ∈ K.
Since (xk) ∈ 0MI

BVσ
(M, p).

For a given ε > 0, ∃ ρ > 0 such that

B0 =
{

k ∈ N : M

( |x′k|
ρ

)pk

≥ ε

}
∈ I.

Let G0 = Kc ∪B0 Then G0 ∈ I.
Then, for all sufficiently large k ∈ G0,

{
k ∈ N : M

( |x′k|
ρ

)pk

≥ ε

}
⊆ {k ∈ N :

{
k ∈ N : M

( |x′k|
ρ

)βqk

≥ ε

}
∈ I.

implies that
{

k ∈ N : M

( |x′k|
ρ

)pk

≥ ε

}
∈ I

Therefore (xk) ∈ 0MI
BVσ

(M,p).

Converse part of the result follows obviously.
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Theorem 2.9. Let p = (pk) and q = (qk) be two sequences of positive real numbers. Then

0MI
BVσ

(M, q) ⊇ 0MI
BVσ

(M,p)

if and only if lim
k∈K

inf qk

pk
> 0, where Kc ⊆ N such that K ∈ I.

Proof. The proof follows similarly as the proof of Theorem 2.8.
Theorem 2.10. Let p = (pk) and q = (qk) be two sequences of positive real numbers. Then 0MI

BVσ
(M, p) =

0MI
BVσ

(M, q) if and only if lim
k∈K

inf pk

qk
> 0, and lim

k∈K
inf qk

pk
> 0, where Kc ⊆ N such that K ∈ I.

Proof.On combining Theorem 2.9 and 2.10 we get the required result.

Theorem 2.11. The set MI
BVσ

(M,p) is closed subspace of `∞(M, p).

Proof. Let (x(i)
k ) be a Cauchy sequence in MI

BVσ
(M, p) such that x(i) → x.

We show that x ∈MI
BVσ

(M, p)
Since (x(i)

k ) ∈MI
BVσ

(M,p), then there exists a sequence ai and ρ > 0 such that

{k ∈ N : M

( | (x(i)
k )

′ − ai |
ρ

)pk

≥ ε} ∈ I

We need to show that
(1) (ai) converges to a.

(2) If U = {k ∈ N : M

(
|(x(i)

k )
′−a|

ρ

)pk

< ε}, then U c ∈ I.

(1) Since (x(i)
k ) is Cauchy sequence in MI

BVσ
(M, p) ⇒ for a given ε > 0, there exists k0 ∈ N such that

sup
k

M

( | (x(i)
k )

′ − (x(j)
k )

′ |
ρ

)pk

<
ε

3
, for all i, j ≥ k0.

For ε > 0, we have

Bij = {k ∈ N : M

( | (x(i)
k )

′ − (x(j)
k )

′ |
ρ

)pk

<
ε

3

}

Bi = {k ∈ N : M

( | (x(i)
k )′ − ai |

ρ

)pk

<
ε

3

}

Bj = {k ∈ N : M

( | (x(j)
k )′ − aj |

ρ

)pk

<
ε

3

}

Then, Bc
ij ,B

c
i , B

c
j ∈ I

Let Bc = Bc
ij ∪Bc

i ∪Bc
j , where B =

{
k ∈ N : M

(
|ai−aj |

ρ

)pk

< ε

}
.

Then, Bc ∈ I.
We choose k0 ∈ Bc.
Then for each i, j ≥ k0,
we have{

k ∈ N : M

(
|ai−aj |

ρ

)pk

< ε

}
⊇

[{
k ∈ N : M

(
|ai−aj |

ρ

)pk

< ε
3

}

∩
{

k ∈ N : M

( | (x(i)
k )′ − ai |

ρ

)pk

<
ε

3

}
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∩
{

k ∈ N : M

( | aj − (x(j)
k )′ |

ρ

)pk

<
ε

3

}]

implies that
(ai) is a Cauchy sequence of scalars in C, so there exists a scalar a in C such that ai → a, as n →∞.
(2) Let 0 < δ < 1 be given. Then we show that if

U = {k ∈ N : M

(
|(x(i)

k )′−a|
ρ

)pk

≤ ε}, then U c ∈ I.

Since x(i) → x, then there exists q0 ∈ N such that

P =
{

k ∈ N : M

( | (x(q0)
k )′ − xk

′ |
ρ

)pk

< (
δ

3D
)H

}
(2.21)

where D = max{1, 2G−1}, G = sup
k

pk ≥ 0 and H = max{1, sup
k

pk}
implies P c ∈ I.
The number q0 can be chosen that together with (2.21), we have

Q =
{

k ∈ N : M

( | aq0 − a |
ρ

)pk

< (
δ

3D
)H

}

such that Qc ∈ I.
Since {

k ∈ N : M

( | (x(q0)
k )′ − aq0 |

ρ

)pk

≥ δ

}
∈ I.

Then, we have a subset S of N such that Sc ∈ I, where

S =
{

k ∈ N : M

( | (x(q0)
k )′ − aq0 |

ρ

)pk

< (
δ

3D
)H

}
.

Let U c = P c ∪Qc ∪ Sc, where

U =
{

k ∈ N : M

( | (x′k − a |
ρ

)pk

< δ

}

Therefore, for each k ∈ U c, we have{
k ∈ N : M

(
|(x′k−a|

ρ

)pk

< δ

}
⊇

[{
k ∈ N : M

(
|(x(q0)

k )′−xk
′|

ρ

)pk

< ( δ
3D )H

}

∩
{

k ∈ N : M

( | aq0 − a |
ρ

)pk

< (
δ

3D
)H

}

∩
{

k ∈ N : M

( | (x(q0)
k )′ − aq0 |

ρ

)pk

< (
δ

3D
)H

}]
.

Then the result follows.
Since the inclusions MI

BVσ
(M,p) ⊂ `∞(M, p) and 0MI

BVσ
(M,p) ⊂ `∞(M, p) are strict so in view of Theorem (2.11)

we have the following result.

Theorem 2.12. The spaces MI
BVσ

(M, p) and 0MI
BVσ

(M, p) are nowhere dense subsets of `∞(M,p).

Theorem 2.13. For an Orlicz function M , the spaces 0BV I
σ (M, p) and BV I

σ (M,p) are sequence algebra.

Proof. Here we consider 0BV I
σ (M, p). For the other result the proof is similar.

Let x = (xk), y = (yk) ∈ 0BV I
σ (M, p) be any two arbitrary elements.
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⇒ ∃ ρ1, ρ2 > 0 such that
{

k ∈ N : M

(
| φm,k(x) |

ρ1
≥ ε

)pk
}
∈ I. (2.22)

and
{

k ∈ N : M

(
| φm,k(y) |

ρ1
≥ ε

)pk
}
∈ I. (2.23)

Let ρ = ρ1ρ2 > 0
Then, it is obvious from (2.22) and (2.23) that

{
k ∈ N : M

(
| φm,k(x)φm,k(y) |

ρ
≥ ε

)pk
}
∈ I.

which further implies that (xk.yk) = (xkyk) ∈ 0BV I
σ (M,p)

Hence, 0BV I
σ (M,p) is a Sequence algebra.

Theorem 2.11. Let M be an Orlicz function. Then, ◦BV Iσ(M, p) ⊂ BV Iσ(M,p) ⊂ ∞BV I
σ (M, p).

Proof. Let M be an Orlicz function. Then, we have to show that
0BV I

σ (M,p) ⊆ BV I
σ (M, p) ⊆ ∞BV I

σ (M,p)
Firstly, 0BV I

σ (M) ⊆ BV I
σ (M) is obvious.

Let x = (xk) ∈ BV I
σ (M,p). Then there exists L ∈ C and ρ > 0 such that

{
k ∈ N : M

( |x′k − L|
ρ

)pk

≥ ε

}
∈ I.

That is

I − lim M

( |x′k − L|
ρ

)pk

= 0.

Therefore, we have

M

( |x′k|
2ρ

)pk

≤ 1
2
M

( |x′k − L|
ρ

)pk

+
1
2
M

( |L|
ρ

)pk

.

Taking supremum over k both sides, we get x = (xk) ∈ ∞BV I
σ (M, p).

Hence, ◦BV I
σ (M,p) ⊂ BV I

σ (M, p) ⊂ ∞BV I
σ (M,p).

Theorem 2.15. If I is not maximal and I 6= If . Then, the space 0BV I
σ (M,p) and BV I

σ (M, p) are not symmetric.

Proof. Let A ∈ I be any infinite set and M(x) = x, for all x ∈ [0,∞).
Define a sequence (xk) as

xk =
{

1, if k ∈ A,
0, otherwise.

Then, it is clear that (xk) ∈ 0BV I
σ (M,p)  BV I

σ (M, p)
Let K ⊆ N be such that K /∈ I and N \K /∈ I.
Let φ : K → A and ψ : Kc → Ac be bijective maps. Then, the mapping π :→ N→ N defined by

π(k) =
{

φ(k), if k ∈ K,
ψk, otherwise.

is a permutation on N
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But (xπ(k)) /∈ BV I
σ (M, p) and hence (xπ(k)) /∈ 0BV I

σ (M, p) showing that

BV I
σ (M, p) and 0BV I

σ (M, p)

are not symmetric sequence spaces.
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[15] P.Kostyrko,M. Mačaj and T.Šalát :Statistical convergence and I-convergence.Real Analysis Exchange.
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