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Abstract

In this paper We consider the Coupling Navier-Stokes/Darcy equations in a two or three dimensional domain
provided with non standard boundary conditions which involve the normal component of the velocity and the
tangential components of the vorticity. We establish a coupled variational formulation of this problem with three
independent unknowns: the vorticity, the velocity and the pressure. We discuss coupling conditions and we analyze
the global coupled model in order to prove its well-posedness and to characterize effective algorithms to compute
the solution of its numerical approximation.
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1 Introduction

There is an increasing interest in coupling incompressible flow and porous media flow. Applications of such complex
phenomena can be found in geosciences (modeling of the interaction of rivers with ground water) and in health sci-
ences (modeling of blood flow and organs). In this work, we consider a domain which is governed by the stationary
Navier Stokes system on one part of the domain and by a second order elliptic equation derived form Darcy’s law
in the rest of the domain, and where the solutions in the two domain are coupled by proper interface conditions.
Then we study the vorticity-velocity-pressure Formulation. We discuss some new finite element methods.

A weak solution for the coupled problem is analyzed and is approximated by totally discontinuous elements in
[12]. In [13] the coupling of the Navier-Stokes equation with nonhomogeneous boundary conditions is analyzed by
using an implicit function theorem. For the Vorticity-velocity-pressure formulation of the Stokes problem and the
Navier Stokes problem, we refer to [7], [2] and [5]. The formulation of the problem as an interface equation, and
the analyz of the associated (nonlinear) Steklov-Poincaré operators is well presented in [4].
An outline of the paper is as follows:
In Section 2, we present the differential model introducing the Navier-Stokes equations for the fluid and Darcy equa-
tions for the porous media. The coupling conditions on the interface between the two domain are well explained.

In section 3 we write the variational formulation of the problem and prove existence and uniqueness results.

In section 4 we introduce the finite elements and a fully discrete system using the curl conforming finite elements
for the velocity and the standard continuous elements for the pressure.
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Section 5 is devoted to numerical experiments wich confirm the theoretical results.

Consider a fluid occupying a bounded domain Ω ∈ Rn, (n = 2, 3), that is subdivided into two disjoint sub-
domains Ω1 and Ω2. Let Γ12 denote the interface between the sub-domains: Γ12 = ∂Ω1 ∩ ∂Ω2. The fluid motion is
modelled by the Navier-Stokes in Ω1 and the Darcy equations in Ω2.

Figure 1: The Presentation of the geometry

We consider the following system of equations:

(P )



−ν∆u+ u.∇u+∇p = f in Ω1

µu+∇p = f in Ω2

divu = 0 in Ω1 ∪ Ω2

u.n = 0 on ∂Ω
(u |Ω1

−u |Ω2
).n = 0 in Γ12

p |Ω1
−p |Ω2

= 0 in Γ12

curlu |Ω1
×n = 0 in Γ12

where u is the velocity, p the pressure, f the density of body forces and µ and ν positive constants.

2 The velocity-Vorticity-pressure formulation of the problem

In this section, we consider the Navier-Stokes equations in a two- or three-dimensional domain provided with a
standard boundary conditions.
Using the vorticity w = curlu as new dependent variable, we obtain the first-order velocity-vorticity-pressure
formulation of the Navier-Stokes equations in Ω1.
As usual, curlu denotes the vorticity, namely the vector function:

(curlu) :

{
(∂u3

∂x2
− ∂u2

∂x3
, ∂u1

∂x3
− ∂u3

∂x1
, ∂u2

∂x1
− ∂u1

∂x2
) if n = 3

(∂u2

∂x1
− ∂u1

∂x2
) if n = 2

.

We introduce the unit outward normal vector n to Ω on Γ and we consider the system of Navier Stokes equations.
We write a variational formulation of this problem with three independent unknowns: the vorticity, the velocity
and the pressure, and prove the existence of a solution for this problem.
The basic idea in [7] consists in introducing a new variable that is the vorticity w = curlu as a new unknown and
to obtain a new formulation of our problem.
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Then, it can be noted that non linear term of the convection (u.∇)u can be written as:

(u.∇)u =
1

2
∇|u|2 + curlu ∧ u. (1)

Also known as curl curlu = −∆u+ grad divu. Thus, we define a pseudo-pressure p (usually called the dynam-
ical pressure) by the formula p = p+ 1

2 |u|
2 .

We consider now the issue of finding effective coupling conditions across the interface Γ12 which separates the
fluid flow and the porous medium. This is a classical problem which has been investigated from both a physical
and a rigorous mathematical point of view.

Adding the new unknown the system of equations (P ) is fully equivalent to:

(Q) :



ν curlw + w ∧ u+∇p = f1 in Ω1

µu+∇p = f2 in Ω2

divu = 0 in Ω1 ∪ Ω2

curlu = w in Ω1

u.n = 0 in ∂Ω
(u |Ω1

−u |Ω2
).n = 0 on Γ12

p |Ω1
−p |Ω2

= 0 on Γ12

γt(w) = 0 on Γ12

In the following, n1 and n2 denote the unit outward normal vectors to the surfaces ∂Ω1 and ∂Ω2, respectively,
and we have n1 = −n2 on ∂Ω.

We recall that the trace operator: v → v.n is continuous from H(div,Ω) to H−
1
2 (∂Ω)

and the jump (v |Ω1 −v |Ω2).n vanishes on Γ12.
To make precise the sense of the operator, γt we recall that it is the trace operator and the tangential trace operator
on ∂Ω, defined by γt(w) = w × n in dimention n = 2 and n = 3 respectively.

In all the paper, we suppose that f1 and f2 the density of body forces in Ω1 and Ω2 respectively are in L2(Ω)3.In
fact, f1 has a value in Ω1 and vanish in the rest of the domain, and f2 has a value in Ω2 and vanish in the rest of
the domain.

In order to write the variational formulation of the previous problem, we introduce the following spaces:

Wm,p(Ω) = {v ∈ Lp(Ω)3, ∂αv ∈ Lp(Ω)3,∀ | α |≤ m}

Hm(Ω) = Wm,2(Ω)

As usual, we shall omit p when p = 2 and denote by (., .) the scalar product of L2(Ω). Also, recall the familiar
notation:

H1
0 (Ω) = {v ∈ H1(Ω); v = 0 on ∂Ω}

with the Poincaré inequality

∀v ∈ H1
0 (Ω), || v ||0,Ω≤ c | v |0,Ω

We consider the domain H(div,Ω) of the divergence operator, namely:

H(div,Ω) = {v ∈ L2(Ω)3,divv ∈ L2(Ω)}

and also its subspace

H0(div,Ω) = {v ∈ H(div,Ω), v.n = 0 on ∂Ω}
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Where ( . ) denotes the duality pairing between H0(div,Ω) and it’s dual.
We introduce the operator space curl

H(curl,Ω) =
{
ϑ ∈ (L2(Ω))

n(n−1)
2 ; curl ϑ ∈ L2(Ω)n

}
. (2)

And the subspace of H(curl,Ω)

H0(curl,Ω) = {ϑ ∈ H(curl,Ω); γt(ϑ) = 0 in ∂Ω} . (3)

Remark

• In dimension n = 2, the space H(curl,Ω) coincides with the space H1(Ω) and the space H0(curl,Ω) coincides
with the space H1

0 (Ω).

• In dimension n = 3, H1(Ω) ⊂ H(curl,Ω) and H1
0 (Ω) ⊂ H(curl,Ω).

3 Variational formulation

Considering X = {v ∈ (L2(Ω))3, curlv|Ω1
∈ (L2(Ω1))3}, and then we obtain the following weak variational formu-

lation, denoted by (V):

(V)

 Find u ∈ X and p ∈ H1(Ω)/R such that :
µ(u, v)Ω2

+ ν(curlu, curlv)Ω1
+ (curlu ∧ u, v)Ω1

+ (∇p, v)Ω = (f1 + f2 , v)Ω ∀v ∈ X
(∇q, u)Ω = 0 q ∈ H1(Ω)/R

For simplicity we denote by f = f1 + f2 such that f1 has a value in Ω1 and vanish in the rest of the domain,
and f2 has a value in Ω2 and vanish in the rest of the domain, so we have:

f =

{
f1 in Ω1

f2 in Ω2

We introduce the problem, establish a decoupled variational formulation and prove its wellposedness. Then we
consider the following system of equations:

Find (w ,u , p) ∈ H0(curl,Ω) × H0(div,Ω) × L2
0(Ω) such that :

∀ v ∈ H0(div,Ω), a(w ,u , v) + h(w ,u , v) + b(v , p) = (f , v)Ω

∀ q ∈ L2
0(Ω), b(u , q) = 0

∀ ϑ ∈ H0(curl,Ω), c(w ,u , ϑ) = 0.

The bilinear forms are a(., ., .), b(., .) and c(., ., .) are defined by :

a(w ,u , v) = µ

∫
Ω2

u(x).v(x)dx+ ν

∫
Ω1

(curlw)(x)v(x)dx (4)

b(v , q) =

∫
Ω

(divv)(x)q(x)dx (5)

c(w ,u , ϕ) =

∫
Ω

(w)(x)ϕ(x)dx−
∫

Ω

u(x).(curlϕ)(x)dx (6)

And the trilinear form h(., ., .) is defined by:

h(w ,u , v) =

∫
Ω

(w(x) ∧ u(x))v(x)dx (7)

We need the next properties which are more developed an demonstrated in [1]:
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1. The first property is based on the characterisation of the domain, in fact if Ω is simply-connected there exist
a constant c0 such that:

‖v‖L2(Ω)n ≤ c0‖curlv‖
L2(Ω)

n(n−1)
2

(8)

2. The positivity and inf-sup condition for the form a(., ., .):
There exists a positive constant α, such that the forme a(., ., .) satisfies

∀ v ∈ V \ 0 sup
(w,u) ∈W

a(w,u,v) > 0

∀(w,u) ∈ W sup
v∈V

a(w,u,v)

‖v‖L2(Ω)n
≥ α(‖w‖H(curl,Ω) + ‖v‖L2(Ω)n).

where W = H0(curl,Ω)×H0(div,Ω).
In fact:

a(w ,u , v) = µ

∫
Ω2

u(x).v(x)dx+ ν

∫
Ω1

(curlw)(x)v(x)dx

= IΩ2
(w ,u , v) + IΩ1

(w ,u , v)

Where

IΩ1
(w ,u , v) = ν

∫
Ω1

(curlw)(x)v(x)dx

= ν

∫
Ω1

(curl w)(x)((curl w)(x) + u(x))dx.

= ν

∫
Ω1

(curl w)(x)2dx+ ν

∫
Ω1

(curl w)(x)u(x)dx

= ν‖curl w‖2L2(Ω1)n + ν

∫
Ω1

(curl w)(x)u(x)dx.

Which gives:

IΩ1(w ,u , v) = ν‖curl w‖2L2(Ω1)n +
ν

2

∫
Ω1

(curl w)(x)u(x)dx

+
ν

2

∫
Ω1

(curl w)(x)u(x)dx.

By using Green’s formula in a domain Ω1:

∫
Ω1

(curl w)(x)u(x)dx =

∫
Ω1

(curlu)(x)w(x)dx−
∫
∂Ω1

γt(w)γ̃(u)(τ)dτ.

with the boundary condition on ∂Ω1.∫
∂Ω1

γt(w)γ̃(u)(τ)dτ = 0 because w ∈ H0(curl,Ω1).

And with condition w = curl u , we obtain∫
Ω1

(curl u)(x)w(x)dx =

∫
Ω1

(curl u)(x)(curl u)(x)dx

= ‖curl u‖2
L2(Ω1)

n(n−1)
2

.
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The form IΩ1 becomes:

IΩ1
(w ,u , v) =

ν

2
‖curl u‖2

L2(Ω1)
n(n−1)

2

+
ν

2
‖w‖2

L2(Ω1)
n(n−1)

2

+ ν‖curl w‖2L2(Ω1)n .

If Ω is simply connexe [1], we have using (9):

∀u ∈ V, ‖u‖L2(Ω1)n ≤ c0‖curl u‖2L2(Ω1)n .

For all u ∈ V, we have:

IΩ1
(w ,u , v) ≥ ν

2
(‖w‖2

L2(Ω1)
n(n−1)

2

+ ‖curl w‖2L2(Ω1)n) +
ν

2c20
‖u‖2L2(Ω1)n .

and then

IΩ1(w ,u , v) ≥ ν

2
‖w‖2

L2(Ω1)
n(n−1)

2

+
ν

2c20
‖u‖2L2(Ω1)n . (9)

In another part we have:

IΩ2
(w ,u , v) = µ

∫
Ω2

u(x).v(x)dx

= µ

∫
Ω2

u(x).((curl w)(x) + u(x))dx

= µ

∫
Ω2

( u)2(x)dx+ µ

∫
Ω2

(curl w)(x)u(x)dx

= µ.(‖u‖2L2(Ω2)n + ‖curlu‖2
L2(Ω2)

n(n−1)
2

)

And then using (9) we obtain the inequality:

IΩ2
(w ,u , v) ≥ (µ+

µ

c20
).‖u‖2L2(Ω2)n (10)

The inequalities (10) and (11) give:

a(w ,u , v) ≥ ν

2
‖w‖2

L2(Ω1)
n(n−1)

2

+
ν

2c2
‖u‖2L2(Ω1)n + (µ+

µ

c20
).‖u‖2L2(Ω2)n . (11)

In the other part we have:

‖v‖2L2(Ω)n = ‖curl w + u‖2L2(Ω)n

≤ (‖u‖L2(Ω)n + ‖curl w‖L2(Ω)n)2

≤ 2(‖u‖2L2(Ω)n + ‖curl w‖2L2(Ω)n).

and

a(w ,u , v)

‖v‖L2(Ω)n
≥ ν

2
√

2

‖w‖2H(curl,Ω) + 1
c20
‖u‖2L2(Ω)n

‖curl w‖2L2(Ω)n + ‖u‖L2(Ω)n
.

If we take the condition 0 < c0 ≤ 1 we obtain:

a(w ,u , v)

‖v‖L2(Ω)n
≥ ν

2
√

2

‖w‖2H(curl,Ω) + ‖u‖2L2(Ω)n

(‖w‖2H(curl,Ω) + ‖u‖2L2(Ω)n)
1
2

=
ν

2
√

2
(‖w‖2H(curl,Ω) + ‖u‖2L2(Ω)n)

1
2

=
ν

2
√

2
(‖w‖H(curl,Ω) + ‖u‖L2(Ω)n).

and

sup
v∈V

a(w ,u , v)

‖v‖L2(Ω)n
≥ α(‖w‖H(curl,Ω)) + ‖u‖L2(Ω)n).
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3. The inf-sup condition for the form b(., .):
There exist a positive constant β such that the forme b(., .) satisfies:

∀q ∈ L2
0(Ω)n sup

v∈H0(div,Ω)

b(v, q)

‖v‖H(div,Ω)
≥ β‖q‖L2(Ω). (12)

4. The continuity of the non linear term h(w, u; v) is more presented in [13], [4].We need some Sobolev imbedding
theorem and from the Holder’s inequality we have:

h(w, u; v) ≤ c‖w‖
Lp(Ω)

n(n−1)
2
‖u‖Lq(Ω)n‖v‖L2(Ω)n (13)

with
p = 6 and q = 3 in dimension n = 2.
p = q = 4 in dimension n = 3.

Theorem 3.1 For all f ∈ H0(div,Ω), the problem (V ) has an unique solution
(w,u, p) ∈ H0(curl,Ω) × H0(div,Ω) × L2

0(Ω),
this solution satisfy the next inequality:

‖w‖H(curl,Ω) + ‖u‖H(div,Ω) + ‖p‖L2(Ω) ≤ c0‖f‖H0(div,Ω). (14)

Theorem 3.2 Problem (Q) and (P ) are equivalent in the sence that any
(w,u,p) ∈ H(curl,Ω) × H(div,Ω) × L2

0(Ω) such that (w ∧ u) belongs to L2(Ω) is a solution of problem (Q) if and
only if it is a solution of (P).

4 Finite element discretization

In what follows and for simplicity, we make the further assumption that both Ω and ΩF are polyhedra. We introduce
a regular family of triangulation (τh)h in the sense that:

• for each h, Ω̄ is the union of all elements of τh;

• for each h, the intersection of two different elements of τh, if not empty, is a corner, a whole edge or a whole
face of both of them;

• the ratio of the diameter hk of an element k in τh to the diameter of its inscribed sphere is bounded by a
constant independent of k and h (As usual, h denotes the maximum of the diameters of the elements of τh);

h denotes the maximum of the diameters of the elements of τh. We denote by τh
1 (resp τh

2) the set of elements k
of τh which are contained in Ω1 (resp Ω2).

We introduce the spaces:

• P0(k) space of the restrictions to k of constant functions on R3

• P1(k) space of the restrictions to k of affine functions on R and the space PK(k) of the restrictions to k of
polynomials v of the form:

v(x) = a+ b ∧ x, a ∈ R3, b ∈ R3

The space PK(k) and the corresponding finite elements are studied in [9]. Their degrees of freedom are the average
flux along the edges

∫
l
(v.t)dl for the six edges l of k, t is the direction vector of l. Hence, we associate the operator

rk where rk(u) is the unique polynomial of PK that has the same flux along the edges as u. We define also the
operator Ik where Ik(q) is the unique polynomial of P1 that has the same values on the vertex of k as q.
We have for all k ∈ τh:

rk(∇q) = ∇Ik(q), ∀q ∈W 2,t(k), ∀t > 2. (15)

Next, let us introduce the discrete spaces:

Xh = {uh ∈ X;uh|k ∈ PK(k),∀k ∈ τh}, (16)
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Qh = {qh ∈ C0(Ω̄); qh|k ∈ P1(k),∀k ∈ τh}, (17)

With these spaces, the finite dimensional analogues of U is:

Uh = {vh ∈ Xh; (∇qh, vh) = 0,∀qh ∈ Qh}, (18)

We define the interpolation operators:

rh : H1(Ω) −→ Xh

u 7−→ rh(u)
(19)

Ih : H2(Ω) −→ Qh
u 7−→ Ih(u)

(20)

We discretize (V ) by:
Find uh ∈ Xh and ph ∈ Qh/R such that

µ(uh, vh)Ω2
+ ν(curl uh, curl vh)Ω1

+ (curl uh ∧ uh, vh)Ω1
+ (∇ph, vh)Ω = (f , vh)Ω, ∀vh ∈ Xh.

Theorem 4.1 Assume that τh is regular family of triangulations. We have:

‖u− rh(u)‖0,Ω + h‖curl(u− rh(u))‖0,Ω + ‖curl (u− rh(u)) ∧ (u− rh(u))‖0,Ω ≤ C h |u|1,t,Ω,

∀u ∈W 1,t(Ω)3, ∀t > 2.

More over, we have, when u ∈ H2(Ω)3:

‖u− rh(u)‖0,Ω ≤ C h2 |u|2,Ω,

‖curl(u− rh(u))‖0,Ω ≤ C h |u|2,Ω,

‖curl (u− rh(u)) ∧ (u− rh(u))‖0,Ω ≤ C2 h3 |u|2,Ω.

Theorem 4.2 Let Ω be a polyhedron and Ω1 a convex polyhedron. Let τh be a uniformly regular family of triangu-
lation of Ω. We have:

‖uh‖0,Ω1
≤ α0(‖uh‖20,Ω2

+ ‖curl uh‖20,Ω1
+ ‖curl uh‖40,Ω1

)
1
2 , uh ∈ Uh.

For the proof of this theorem we need the following results, [10]:

Theorem 4.3 ∀ v ∈ L2(Ω1)3, satisfying:

div v = 0 , curl v ∈ L2(Ω1)3 , v · n = 0 on Γ,

verify

‖v‖0,Ω1
≤ c‖curl v‖0,Ω1

.

If Ω1 is convex, v ∈ H1(Ω1) and we have

‖v‖1,Ω1
≤ c‖curl v‖1,Ω1

.

Proof
Let Ω1 be convex, for every uh ∈ Xh we consider the Dirichlet problem:

(∇z,∇µ)Ω1
= (uh,∇µ)Ω1

, ∀µ ∈ H1(Ω1)/R.

We denote

ω = uh −∇zh ∈ UΩ1
= {v ∈ H(curl,Ω1); (v,∇q)Ω1

= 0, ∀q ∈ H1(Ω1)/R},
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we have

curl ω = curl uh.

From theorem 3, It follows that

‖ω‖1,Ω1 ≤ c1‖curl ω‖0,Ω1

and we refere to [9] and [10] for more detail about the next inequality:

‖rhω − ω‖0,Ω1 ≤ c2‖curl uh‖0,Ω1 .

Then, we apply the operator rh to ω, uh is written:

uh = rhω +∇zh, zh ∈ Qh.

Hence

‖uh‖0,Ω1 ≤ ‖rhω − ω‖0,Ω1 + ‖ω‖0,Ω1 + 2‖curl uh ∧ uh‖0,Ω1 + ‖∇zh‖0,Ω1 ,

Firstly, we have

‖rhω − ω‖0,Ω1 ≤ c2‖curl uh‖0,Ω1 ,

‖ω‖0,Ω1
≤ ‖ω‖1,Ω1

≤ c1‖curl uh‖0,Ω1
,

‖curl uh ∧ uh‖0,Ω1
≤ ‖curl uh‖0,Ω1

‖uh‖0,Ω1
≤ c3‖curl uh‖20,Ω1

.

It remains to be seen ‖∇zh‖0,Ω1
. For this we take µh ∈ Qh:

(∇zh,∇µh)Ω1
= (uh − rhω,∇µh)Ω1

= (uh,∇µh)Ω1 + (ω − rhω,∇µh)Ω1

= −(uh,∇µh)Ω2 + (ω − rhω,∇µh)Ω1

≤ ‖uh‖0,Ω2
‖∇µh‖0,Ω2

+ c2‖curl uh‖0,Ω1
‖∇µh‖0,Ω1

.

We choose µh ∈ Qh such that:

µh\Ω̄1
= zh\Ω̄1

, µh\∂Ω = 0,

so we obtain:

‖∇µh‖0,Ω2
≤ c‖zh‖ 1

2 ,Γ
≤ c4‖∇zh‖0,Ω1 .

We deduce that:

‖∇zh‖0,Ω1 ≤ c′(‖uh‖0,Ω2 + ‖curl uh‖0,Ω1).

And finally the result.

5 Numerical results

To validate the theoretical results, we performed several numerical simulations using the FreeFem ++ software (see
[14]).
The geometry considered is a square ]0, 1.5[×]− 1, 0[.
The numerical force and the pressure are taken as

f(x, y) = x2 + y2,

p(x, y) = −x− y.

We take µ and ν equal to 1 for simplicity. In what follows, we present the results obtained. The geometry mesh
is given by figure 2.

In figure 3, we can see the isovalues for the velocity.
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Figure 2: Mesh of the domain

Figure 3: Isovalues
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