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Abstract 
 

In this paper, we study quotients of a numerical semigroups with RF (Row-Factorization) matrices. We prove a formula for the Frobeni-

ous number of quotients of some families of numerical semigroups. Moreover, we examine half of the numerical semigroups, pseudo-

symmetric numerical semigroups. 
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1. Introduction 

A generalization of the linear Diophantine Frobenius problem can be stated as follows. Let n1, … . , np and f be positive integers with 

gcd{n1, … . , np} = 1. Find a formula for the largest multiple of f not belonging to 〈n1, … . , np〉.This problem is equivalent to the 

computation of the Frobenius number of the semigroup 
〈n1,…,np〉

f
 , and it still remains open for p = 2.Semigroup of the form 

T

f
 also occur 

in a natural way in the scope of proportionally modular numerical semigroup. In [1], it is shown that a numerical semigroup is 

proportionally modular if and only if it is the quotient of an embedding dimension two numerical semigroup. This result is later 

sharpened in [2] where it is shown that it suffices to take numerical semigroups generated by an integer and this integer plus one . So far 

we have no general formula for the largest multiple of an integer not belonging to 〈a, a + 1〉, with a an integer greater than two. Since 

numerical semigroups with embedding dimension two are symmetric, we wondered which is the class of all numerical semigroups that 

are quotients of symmetric numerical semigroups. Surprisingly, this class covers the set of all numerical semigroups as shown in [3]. 

What is more amazing is that it suffices to divide by two. The same does not hold for pseudo-symmetric numerical semigroups, and we 

need to divide by four to obtain the whole set of numerical semigroups as quotients of pseudo-symmetric numerical semigroups (see [4]). 

As for other families of numerical semigroups, for instance, we still do not know how to decide if a numerical semigroup is the quotient 

of a numerical semigroup with embedding dimension three.The Notion of quotient of a numerical semigroup was introduced by in [5] in 

order to solve diophantine inequalities. Several Authors studied such quotients; for instance J.C.Rosales and P.A.Garaa Sanchez proved 

in [6,7] that every numerical semigroup is one half of infinitely many symmetric semigroups.Moscariello introdued the RF(Row-

Factorization) matrices whichis very useful in the classification of almost symmetric numerical semigroup in 2016 [8].In this study, we 

presnt the quotient of a numerical semigroups. 

2. The quotient of numerical semigroup 

Definition.2.1: Let ℕ is the set of non-negative integers and 𝑇 ∈ ℕ . If T is closed under the addition in ℕ and 0 ∈ 𝑇 𝑎𝑛𝑑 ℕ \𝑇 is finite 

then This is a numerical semigroup, for all 𝑡1, 𝑡2, … . , 𝑡𝑛 ∈ 𝑇 it is denoted by 

 

T = 〈t1, t2, … . , tn〉 = { ∑ ti xi ∶  xi
n
i=1 ∈ ℕ }  

 

And the following is correct  

 
(t1, t2, … . , tn) = 1 ⇔  ℕ\T is finite. 

 

Example.2.2: Let 𝑇 == 〈3,5〉 = {3𝑥1 + 3𝑥2: 𝑥1, 𝑥2 ∈ ℕ} = {0,3,5,6,8,9,10, →} 

 

i) 0 ∈ T, 

ii) For all t1, t2 ∈ T, there is x1, x2, y1, y2 ∈ ℕ such that t1 = 3x1 + 5x2 , t2 = 3y1 + 5y2 and  
x + y = 3(x1 + x2) + 5(x1 + x2) ∈ T, 
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iii) ℕ\T = {1,2,4,7} is finite so T is a numerical semigroup.  

 

Definition2.3: Let T be a numerical semigroup. The largest integer that is not in T is called the frobenius number of T and denoted by 

F(T), 

 

F(T) = max (ℕ\T)  

 

Or 

 

F(T) = max{x ∈ ℤ ∶ x ∉ T}.  
 

Definition 2.4: The positive elements that is not in T and is denoted by G(T). The elements of gaps is called genus of T and g(T)=
|𝐺(𝑇)|. 
 

Proposition 2.5: Let T be a numerical semigroup and let f be a positive integer .Set  

 
T

f
= {x ∈ ℕ | fx ∈ T} . 

 

1) 
T

f
 is a numerical semigroup. 

2) T ⊆
T

f
 . 

3) 
T

f
 = ℕ if and only if f ∈ T . 

 

The semigroup 
𝑇

𝑓
 is called the quotient of T by 𝑓. Accordingly we say that 

𝑇

2
 is one half of T  

 

and that 
𝑻

𝟒
 is one fourth of T. 

 

Proposition 2.6: Let T be a numerical semigroup and let 𝑓 a positive integer. Then 

 

FG(
𝑇

𝑓
)  = {

ℎ

𝑓 
| ℎ ∈ 𝐹𝐺(𝑇) 𝑎𝑛𝑑 ℎ ≡ 0 𝑚𝑜𝑑 𝑓}. 

 

Proof: The integer h belongs to FG(
𝑇

𝑓
) if and only if ℎ ∉  

𝑇

𝑓
 and 𝑘ℎ ∈

𝑇

𝑓
 for every integer k greater than one. This is equivalent to 𝑓ℎ ∉

𝑇 and 𝑘𝑓ℎ ∈ 𝑇 for for any integer k than one. 

 

Corollary 2.7. Let T be a numerical semigroup and let f be a positive integer.Then 

 

𝑓 ∈ 𝐹𝐺(𝑇) if and only if 
𝑇

𝑓
 = 〈2,3〉. 

 

Proof: Observe that 𝐹𝐺((〈2,3〉) = 1. Then use Proposition 2.6. 

 

As we know, one of the best ways to describe a numerical semigroup is by means of the Apery set of any of its nonzero elements.  

 

Note that if T is a numerical semigroup, 𝑛 ∈ 𝑇 and 𝑓|𝑛 , 𝑡ℎ𝑒𝑛 
𝑛

𝑓
∈

𝑇

𝑓
 . We describe Ap(

𝑇

𝑓
,

𝑛

𝑓
) in terms of Ap(𝑇, 𝑛). 

 

Proposition 2.8: Let T be a numerical semigroup. Let 𝑛 be a nonzero element of T and let 𝑓 be a divisor of 𝑛. 
 

Then , 

 

AP(
𝑇

𝑓
,

𝑛

𝑓
)  = {

𝑣

𝑓
 | 𝑣 ∈ 𝐴𝑝(𝑇, 𝑛) 𝑎𝑛𝑑 𝑣 ≡ 0 𝑚𝑜𝑑 𝑓}. 

 

Proof: The idea of the proof is analogous to the proof of Proposition 2.6. 

 

Corollary 2.9. Let T be a numerical semigroup. Let 𝑛 be a nonzero element of T and let 𝑓 be a divisor of 𝑛. 

 

Assume that Ap (T,𝑛) = {0, 𝑘1𝑛 + 1, … … . , 𝑘𝑛−1𝑛 + 𝑛 − 1}. Then 

 

1) Ap(
𝑇

𝑓
,

𝑛

𝑓
) =  {0, 𝑘𝑓

𝑛

𝑓
+ 1, … … , 𝑘

(
𝑛

𝑓
−1)𝑓

𝑛

𝑓
+

𝑛

𝑓
− 1}, 

2) g(
𝑇

𝑓
) = 𝑘𝑓 + 𝑘2𝑓 + ⋯ . +𝑘

(
𝑛

𝑑
−1)𝑓

  

3) F(
𝑇

𝑓
) = 𝑚𝑎𝑥 {𝑘𝑓

𝑛

𝑓
+ 1, … … . . , 𝑘

(
𝑛

𝑓
−1)𝑓

𝑛

𝑓
+

𝑛

𝑓
− 1} −

𝑛

𝑓
 . 

 

Example 2.10: Let T be a numerical semigroup and 𝑛 be a nonzero element of T and let 𝑓 be a divisor of 𝑛. 

 

T= 〈5,7,9〉 = {0,5,7,9,10,12,14, →} and for 𝑓 = 2, 
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𝑇

2
= {𝑥 ∈ ℕ ∶  2𝑥 ∈ 𝑇} = {0,5,6,7,8, →} . 

 

We will use this formula to find the Apery set, 𝑛1 = 5 , 𝑛2 = 7 , 𝑛3 = 9 

 

For 𝑛1 = 5 Ap= (
𝑇

𝑓
,

𝑛

𝑓
) = {0, 𝑘2

5

2
+ 1, … … , 𝑘

(
5

2
−1)2

5

2
+

5

2
− 1} = {0,6,7,8,9} 

 

𝑘2
5

2
+ 1 = 2.

5

2
+ 1 = 6  

 

𝑘
(

5

2
−1)2

5

2
+

5

2
− 1 =

3

2
 .2.

5

2
+

3

2
=

15

2
+

3

2
=

18

2
= 9  

 

𝐹 (
𝑇

2
) = 𝑚𝑎𝑥 {𝑘2

5

2
+ 1, … … , 𝑘

(
5

2
−1)2

5

2
+

5

2
− 1} −

5

2
  

 

𝐹 (
𝑇

2
) = {0,6,7,8,9}  

 

𝐹 (
𝑇

2
) = 9  

3. RF-matrices the quotient of numerical semigroup 

For a numerical semigroup T, set 

 

2𝑇 = {2𝑡 | 𝑡 ∈ 𝑇}. 

 

This set is a submonoid of ℕ. Moreover , 2〈𝑛1, … . , 𝑛𝑝〉 = 〈2𝑛1, … . ,2𝑛𝑝〉. 

 

Theorem 3.1. Let 𝑇 = 〈𝑛1, … , 𝑛𝑝〉 𝑤𝑖𝑡ℎ 𝑃𝐹(𝑇) = {𝑓1, … , 𝑓𝑙}. Let 𝑓 be an odd integer such that 𝑓 − 𝑓𝑖 − 𝑓𝑗 ∈ 𝑇 𝑓𝑜𝑟 𝑎𝑙𝑙  

 

 𝑖, 𝑗 ∈ {1, … , 𝑙}. Then 

 

𝐿 = 〈2𝑛1, 2𝑛2, … ,2𝑛𝑝, 𝑓 − 2𝑓1, … , 𝑓 − 2𝑓𝑡〉  

 

Is a symmetric numerical semigroup with Frobenius number 𝑓 𝑎𝑛𝑑 𝑇 =
𝐿

2
 . Moreover, 

 

𝐿 = 2𝑇 ∪ ({𝑓 − 2𝑓1, … , 𝑓 − 2𝑓𝑙} + 2𝑇). 

 

Proof . See [9]. 

 

Definition 3.2: PF(T) is the set of Pseudo-Frobenius number of T, 

 

𝑃𝐹(𝑇) = {𝑥 ∉ 𝑇| 𝑥 + 𝑡 ∈ 𝑇, 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑡 ∈ 𝑇\{0}}  

 

= {𝑥 ∉ 𝑇 | 𝑥 + 𝑛𝑖  ∈ 𝑇, 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑖 = 1,2, … . , 𝑒}.  
 

Corollary 3.3. Let T be a numerical semigroup. Then there exist infinitely many symmetric numerical semigroups L such that 𝑇 =
𝐿

2
 . 

 

Proof: Assume that 𝑃𝐹(𝑇) = {𝑓1 , … , 𝑓𝑙}. 𝐶ℎ𝑜𝑜𝑠𝑒 𝑎𝑛 𝑜𝑑𝑑 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑓 greater than or equal to 3𝐹(𝑇) + 1 .  
 

For 𝑖, 𝑗 ∈ {1, … , 𝑙}, 𝑓 − 𝑓𝑖 − 𝑓𝑗 ≥ 3𝐹(𝑇) + 1 − 𝐹(𝑇) − 𝐹(𝑇) = 𝐹(𝑇) + 1. Thus 𝑓 − 𝑓𝑖 − 𝑓𝑗 ∈ 𝑇 . From Theorem 3.1, we know that 

 

𝐿𝑓 = 2𝑇 ∪ ({𝑓 − 2𝑓1, … , 𝑓 − 2𝑓𝑙} + 2𝑇) is a symmetric numerical semigroup with Frobenius number 𝑓 and such that 𝑇 =
𝐿𝑓

2
 .  

 

The proof now follows by observing that we can choose infinitely many odd numbers greater than or equal to 3𝐹(𝑇) + 1 , and that for  

each of them we obtain a different 𝐿𝑓 . 

 

Definition 3.4: If 𝑓 = 𝑃𝐹(𝑇), 𝑡ℎ𝑒𝑛 𝑓 + 𝑛𝑖 ∈ 𝑇, for every 𝑖 = 1, … … , 𝑒, hence there exist 𝑎𝑖1, 𝑎𝑖2, … … , 𝑎𝑖𝑒 ∈ ℕ such that  

 

𝑓 + 𝑛𝑡 = ∑ 𝑎𝑖𝑗
𝑒
𝑗=1 𝑛𝑗  .  

 

Nevertheless , 𝑎𝑖𝑖 > 0 would imply 𝑓 ∈ 𝑇 ; 𝑡ℎ𝑢𝑠 𝑎𝑖𝑖 = 0. Thus, for every 𝑖,there exist 𝑎𝑖1, 𝑎𝑖2, … . , 𝑎𝑖𝑒 ∈ ℕ such that  

 

𝑓 = ∑ 𝑎𝑖𝑗
𝑒
𝑗=1 𝑛𝑗  𝑎𝑛𝑑 𝑎𝑖𝑖 = −1.  

 

Let 𝑇 = 〈𝑛1, 𝑛2, … , 𝑛𝑒〉 be a numerical semigroup and 𝑓 ∈ 𝑃𝐹(𝑇). 
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We say that 𝐴 = (𝑎𝑖𝑗) ∈ 𝑀𝑒(ℤ) is an RF-Matrix (Row-Factorization matrix) for 𝑓 𝑖𝑓 𝑎𝑖𝑖 = −1 for every 𝑖 = 1,2, … . , 𝑒, 𝑎𝑖𝑗 ∈ ℕ 𝑖𝑓 

 

 𝑖 ≠ 𝑗 𝑎𝑛𝑑 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑖 = 1,2, … . , 𝑒  

 
∑ 𝑎𝑖𝑗 𝑛𝑗

𝑒
𝑗=1 = 𝑓.  

 

İf T is almost symmetric and 𝑓 ∈ 𝑃𝐹(𝑇)\{𝐹(𝑇)} , there exists an RF-Matrix for both f and 𝐹(𝑇) − 𝑓 . İn general , this matrix is not 

unique. 

 

Example 3.5: Let 𝑇 = 〈6,7,9,10〉 = {0,6,7,9,10,12,13,14,15,16,17, →}, 
 

𝐹(𝑇) = 11,  
 

𝐺(𝑇) = ℕ\𝑇 = {1,2,3,4,5,8,11},  
 

𝑛1 = 6 , 𝑛2 = 7 , 𝑛3 = 9 , 𝑛4 = 10.  
 

Let take 𝑓 = 8 ∈ 𝑃𝐹(𝑇) and let try to write RF-Matrices of f .Firstly ,we find the numbers 𝑎12, 𝑎13, 𝑎14 ∈ ℕ such that , 

 

8 = 𝑎116 + 𝑎127 + 𝑎139 + 𝑎1410 ,  
 

Where 𝑎11 = −1 from the equality, 

 

8 = (−1). 6 + 2.7 + 0.9 + 0.10 ,  
 

We find 𝑎12 = 2 , 𝑎13 = 0 , 𝑎14 = 0. 

 

Hence ,first row of the RF-Matrices is found for 𝑓 = 8𝑃𝐹(𝑇). 
 

In a similar manner ,the numbers are found 𝑎21 = 1 , 𝑎23 = 1 , 𝑎24 = 0 such that  

 

8 = 1.6 + (−1). 7 + 1.9 + 0.10 ,  
 

Where 𝑎21 = −1 

 

This gives the second row of the matrix.Go on in this way ,RF-Matrix of 𝑓 = 8 ∈ 𝑃𝐹(𝑇) 

 

(

−1 2 0
1 −1 1
0
0

1
0

−1
2

 

0
0
1

−1

 ). 

 

Also ,if we consider , 

 

8 = 3.6 + 0.7 + 0.9 + (−1). 10 .  
 

Then the RF-Matrices of f turns to  

 

( 

−1 2 0
1 −1 1
0
3

1
0

−1
0

 

0
0
1

−1

 
 
 
). 

 

This proves that RF-Matrices are not unique. 

 

Lemma 3.6: Let T be a numerical semigroup with even Frobenius number. Then 

 

𝐹 (
𝑇

2
) =

𝐹(𝑇)

2
. 

 

Proof: Follows by Proposition 2.6., by taking into account the Frobenius number of a numerical semigroup is the maximum of the 

fundamental gaps. 

 

Example 3.7: Let T be a numerical semigroup with even Frobenius number. 𝑇 = 〈3,5〉 = {0,3,5,6, →} 

 

The set of gaps of T 𝐺(𝑇) = ℕ \ 𝑇 = {1,2,4} and the set of Frobenius numbers of T. 𝐹(𝑇) = 𝑚𝑎𝑥(ℕ\𝑇) = 4. 

 

Now let’s find half of T with the even Frobenius number of T; 

 

𝑇/2 = {𝑥 ∈ ℕ ∶ 2𝑥 ∈ 𝑇} = {0,3,4,5,6, →}  
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Let’s find the set of gaps of half of T; 

 

𝐺 (
𝑇

2
) = (ℕ\𝑇/2) = {1,2} and 𝐹 (

𝑇

2
) = 𝑚𝑎𝑥 (𝐺 (

𝑇

2
)) = 2 

 

𝐹 (
𝑇

2
) = 2 𝑎𝑛𝑑 

𝐹(𝑇)

2
=

4

2
 = 2   

 

𝐹 (
𝑇

2
) =

𝐹(𝑇)

2
  

 

The set of pseudo-Frobienus numbers of T; 

 

𝑃𝐹(𝑇) = {𝑓 ∉ 𝑇 | 𝑓 + 𝑛𝑖  ∈ 𝑇, ∀𝑖= 1,2}  

 

𝐺(𝑇) = ℕ\𝑇 = {1,2,4} 𝑛1 = 3 𝑎𝑛𝑑 𝑛2 = 5  

 

For 𝑓 = 1 . 𝑓 + 𝑛1 = 1 + 3 = 4 ∉ 𝑇 ⇒ 𝑓 = 1 ∉ 𝑃𝐹(𝑇) 

 

For 𝑓 = 2 . 𝑓 + 𝑛1 = 2 + 3 = 6 ∈ 𝑇 ⇒ 𝑓 = 2 ∈ 𝑃𝐹(𝑇) 

 

𝑓 + 𝑛2 = 2 + 5 = 7 ∈ 𝑇 ⇒ 𝑓 = 2 ∈ 𝑃𝐹(𝑇)  

 

For 𝑓 = 4. 𝑓 + 𝑛1 = 4 + 3 = 7 ∈ 𝑇 ⇒ 𝑓 = 4 ∈ 𝑃𝐹(𝑇) 

 

𝑓 + 𝑛2 = 4 + 5 = 9 ∈ 𝑇 ⇒ 𝑓 = 4 ∈ 𝑃𝐹(𝑇)  

 

PF(T)= {2,4}. 

 

 𝐿𝑒𝑡′𝑠 𝑔𝑒𝑡 𝑓 = 2 ∈ 𝑃𝐹(𝑇) 𝑎𝑛𝑑 𝑎11 = −1   
 

2 = 𝑎11. 3 + 𝑎125  

 

2 = (−1). 3 + (1). 5  

 

2 = −3 + 5  

 

From the equation 𝑎11 = −1 , 𝑎12 = 1  
 

And still 𝑎22 = −1  
 

2 = 𝑎21. 3 + 𝑎22. 5  

 

2 = (
7

3
) . 3 + (−1). 5  

 

2 = 7 + (−5)  

 

From the equation 𝑓 = 2 ∈ 𝑃𝐹(𝑇)′𝑠 𝑅𝐹 − 𝑚𝑎𝑡𝑟𝑖𝑥. 

 

(
−1 1

7

3
−1)  

 

Similarly 𝑓 = 4 ∈ 𝑝𝑓(𝑇) .Let’s find the RF-Matrix of PF(T). 

 

4 = 𝑎11. 3 +  𝑎12. 5 𝑎11 = −1 , 𝑎12  =  
7

5
  

 

4 = (−1). 3 + 
7

5
 . 5  

 

4 =  −3 + 7  

 

4 =  𝑎21. 3 +  𝑎22 . 5 𝑎21 = 3 , 𝑎22  = −1  

 

4 = 3.3 + (−1). 5  

 

4 = 9 + (−5)  

 

Then the RF-Matrix of 𝑓 = 4 ∈ 𝑃𝐹(𝑇). 
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(
−1

7

5

3 −1
)  

 

Lemma 3.8: Let T be a symmetric numerical semigroup. Let 𝐵 = {𝐹(𝑇) + 2𝑘| 𝑘 ∈ {1, … ,
𝐹(𝑇)−1

2
}} .Then 

 

𝐿 = 2𝑇 ∪ 𝐵 ∪ {2𝐹(𝑇) + 1, →}  

 

Is a pseudo-symmetric numerical semigroup with Frobenius number 2𝐹(𝑇) and such that 𝑇 =
𝐿

2
 . 

 

Proof: Since T is symmetric, 𝐹(𝑇) is odd. Notice that B is the set of odd integers belonging to the set 

 

{𝐹(𝑇) + 2, … ,2𝐹(𝑇) − 1} and that #𝐵 =
𝐹(𝑇)−1

2
 . 

 

We start by proving that L is a numerical semigroup. In one hand ,it is obvious that the sum of two elements of 2T is an element of 2T 

and that the result of adding any nonnegative integer to any element in {2𝐹(𝑇) + 1, →} remains in {2𝐹(𝑇) + 1, →} . On the other hand 

the sum of elements of B is an element of {2𝐹(𝑇) + 1, →} .Finally the sum of an element of 2T with an element of B is an element of 

𝐵 ∪ {2𝐹(𝑇) + 1, →} . Notice also that since {2𝐹(𝑇) + 1, →} ⊆ 𝐿, we have that ℕ\𝐿 is finite.  

Now let us prove that 2𝐹(𝑇) 𝑖𝑠 𝑡ℎ𝑒 𝐹𝑟𝑜𝑏𝑒𝑛𝑖𝑢𝑠 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐿 . As {2𝐹(𝑇) + 1, →} ⊆ 𝐿, we only have to show that 2𝐹(𝑇) ∉ 𝐿. 
But this holds since 2F(T) is an even number and 2𝐹(𝑇) ∉ 2𝑇.Next we will see that L is a pseudo-symmetric numerical semigroup. 

And since 2F(T) is the Frobenius number of L, , it suffices to prove that 𝑛(𝐿) = 𝐹(𝑇) . As T is symmetric, we have 𝑛(𝑇) =
𝐹(𝑇)+1

2
 . 

Hence # {𝑥 ∈ 2𝑇| 𝑥 ≤ 2𝐹(𝑇)} =  #{𝑥 ∈ 𝑇 |𝑥 ≤ 𝐹(𝑇)}  = 𝑛(𝑇) =
𝐹(𝑇)+1

2
 .Therefore 𝑛(𝐿) =

𝐹(𝑇)+1

2
+ # 𝐵 =

𝐹(𝑇)+1

2
+

𝐹(𝑇)−1

2
= 𝐹(𝑇). 

Finally we prove that 𝑇 =
𝐿

2
 .We have 𝑥 ∈

𝐿

2
 if and only if 2𝑥 ∈ 𝐿 .Since the elements of B are odd, we obtain 2𝑥 ∈ 𝐿 if and only if  

2𝑥 ∈ 2𝑇 ∪ {2𝐹(𝑇) + 1, →} .If 2𝑥 ∈ 2𝑇,then trivially 𝑥 ∈ 𝑇. İf 2𝑥 ≥ 2𝐹(𝑇) + 1, 𝑡ℎ𝑒𝑛 𝑥 ≥ 𝐹(𝑇) + 1 and thus 𝑥 ∈ 𝑇 .Therefore 𝑥 ∈
𝐿

2
 if 

and only if 𝑥 ∈ 𝑇.As a consequence of this lemma and Corollary 3.3., we obtain the following.  

 

Theorem 3.9: Every numerical semigroup is one fourth of infinitely many pseudo-symmetric numerical semigroups. 

 

Lemma 3.10: Let T be a pseudo-symmetric numerical semigroup. Let 𝐵 = {𝐹(𝑇) + 2𝐾 − 1 | 𝑘 ∈ {1, . . . ,
𝐹(𝑇)

2
} }. 

 

Then  

 

𝑇 = 2𝑇 ∪ 𝐵 ∪ {2𝐹(𝑇) + 1, →}  

 

Is a pseudo-symmetric numerical semigroup with Frobenius number 2F(T) and such that 𝑇 =
𝐿

2
 . 

Proof: Since T is pseudo-symmetric, F(T) is even. Notice that B is the set of odd integers belonging to the set {𝐹(𝑇) + 1, … ,2𝐹(𝑇) −

1} 𝑎𝑛𝑑 𝑡ℎ𝑎𝑡 # 𝐵 =
𝐹(𝑇)

2
 . The proof that L is a numerical semigroup with Frobenius number 2F(T) and that 𝑇 =

𝐿

2
 is similar to the one 

performed in Lemma 3.8. 

Let us see that L is pseudo-symmetric. The fact that 2F(T) is the Frobenius number of L , it suffices to prove that 𝑛(𝐿) = 𝐹(𝑇). 

Since T is a pseudo-symmetric numerical semigroup and that 𝑛(𝑇) =
𝐹(𝑇)

2
 .  

Hence #{x ∈ 2T | x ≤ 2F(T) } =  #{x ∈ T | x ≤ F(T)} =  n(T) =
F(T)

2
 . Therefore n(L) =

F(T)

2
+  # B =

F(T)

2
+

F(T)

2
 = F(T). 
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