Generalized Hyers-Ulam-Rassisa Stability of An Additive $\left(\beta_{1}, \beta_{2}\right)$-Functional Inequalities With n - Variables In Complex Banach Space

LY VAN AN
Faculty of Mathematics Teacher Education, Tay Ninh University, Ninh Trung, Ninh Son, Tay Ninh Province, Vietnam Email address lyvanan145@gmail.com.

Abstract

In this paper we study to solve the additive $\left(\beta_{1}, \beta_{2}\right)$-functional inequality with $n-v a r i a b l e s$ and their Hyers-Ulam stability. First are investigated in complex Banach spaces with a fixed point method and last are investigated in complex Banach spaces with a direct method. I will show that the solutions of the additive $\left(\beta_{1}, \beta_{2}\right)$-functional inequality are additive mapping. Then Hyers - Ulam stability of these equation are given and proven. These are the main results of this paper.

Keywords: Additive $\left(\beta_{1}, \beta_{2}\right)$-Functional Inequality; Fixed Point Method; Direct Method; Banach Space; Hyers - Ulam Stability. Mathematics Subject Classification : 46S10, 39B62, 39B52, 47H10,

1. Introduction

Let \mathbf{X} and \mathbf{Y} be normed spaces on the same field \mathbb{K}, and $f: \mathbf{X} \rightarrow \mathbf{Y}$. We use the notation $\|\cdot\|$ for all the norms on both \mathbf{X} and \mathbf{Y}. In this paper, we investisgate additive $\left(\beta_{1}, \beta_{2}\right)$-functional inequality when \mathbf{X} is real or complex normed space and \mathbf{Y} a complex Banach space. We solve and prove the Hyers-Ulam stability of forllowing additive (β_{1}, β_{2})-functional inequality.

$$
\begin{align*}
& \left\|2 f\left(\frac{x_{1}+x_{2}}{2}+\frac{x_{3}+x_{4}+\ldots+x_{k}}{4}\right)-f\left(x_{1}\right)-f\left(x_{2}+\frac{x_{3}+x_{4}+\ldots+x_{k}}{2}\right)\right\|_{\mathbf{Y}} \\
& \quad \leq\left\|\beta_{1}\left(f\left(x_{1}+x_{2}+\frac{x_{3}+x_{4}+\ldots+x_{k}}{2}\right)+f\left(x_{1}-x_{2}-\frac{x_{3}+x_{4}+\ldots+x_{k}}{2}\right)-2 f\left(x_{1}\right)\right)\right\|_{\mathbf{Y}} \\
& \quad+\left\|\beta_{2}\left(f\left(x_{1}+x_{2}+\frac{x_{3}+x_{4}+\ldots+x_{k}}{2}\right)-f\left(x_{1}\right)-f\left(x_{2}+\frac{x_{3}+x_{4}+\ldots+x_{k}}{2}\right)\right)\right\|_{\mathbf{Y}} \tag{1}
\end{align*}
$$

In which β_{1}, β_{2} are fixed nonzero complex numbers with $\sqrt{2}\left|\beta_{1}\right|+\left|\beta_{2}\right|<1$.
Note that in the preliminaries we just recap some of the most essential properties for the above problem and for the specific problem, please see the document. The Hyers-Ulam stability was first investigated for
functional equation of Ulam in [28] concerning the stability of group homomorphisms.
The functional equation

$$
f(x+y)=f(x)+f(y)
$$

is called the Cauchy equation. In particular, every solution of the Cauchy equation is said to be an additive mapping.
The Hyers [13] gave first affirmative partial answer to the equation of Ulam in Banach spaces. After that, Hyers'Theorem was generalized by Aoki[1] additive mappings and by Rassias [25] for linear mappings considering an unbouned Cauchy diffrence. Ageneralization of the Rassias theorem was obtained by Găvruta [10] by replacing an unbounded Cauchy difference with a general control function in the spirit of Rassias' approach.
The stability of quadratic functional equation was proved by Skof [27] for mappings $f: X \rightarrow Y$, where X is a normed space and Y is a Banach space. Park [24], [25] defined additive γ-functional inequalities and proved the HyersUlam stability of the additive γ-functional inequalities in Banach spaces and nonArchimedean Banach spaces. The stability problems of various functional equations have been extensively investigated by a number of authors on the world. We recall a fundamental result in fixed point theory. Recently, in [3], [4], [21], [22], [24], [25] the authors studied the Hyers-Ulam stability for the following functional inequalities

$$
\begin{align*}
& \left\|f\left(\frac{x+y}{2}+z\right)-f\left(\frac{x+y}{2}\right)-f(z)\right\| \leq\left\|f\left(\frac{x+y}{2^{2}}+\frac{z}{2}\right)-\frac{1}{2} f\left(\frac{x+y}{2}\right)-\frac{1}{2} f(z)\right\| \tag{2}\\
& \left\|f\left(\frac{x+y}{2^{2}}+\frac{z}{2}\right)-\frac{1}{2} f\left(\frac{x+y}{2}\right)-\frac{1}{2} f(z)\right\| \leq\left\|f\left(\frac{x+y}{2}+z\right)-f\left(\frac{x+y}{2}\right)-f(z)\right\| \tag{3}\\
& \|f(x+y)-f(x)-f(y)\| \leq\left\|\rho\left(2 f\left(\frac{x+y}{2}\right)-f(x)-f(y)\right)\right\| \tag{4}\\
& \left\|2 f\left(\frac{x+y}{2}\right)-f(x)-f(y)\right\| \leq\|\rho(f(x+y)-f(x)-f(y))\| \tag{5}
\end{align*}
$$

and

$$
\begin{align*}
& \left\|f\left(\frac{x+y}{2}+z\right)+f\left(\frac{x+y}{2}-z\right)-2 f\left(\frac{x+y}{2}\right)-2 f(z)\right\| \\
\leq & \left\|\beta\left(2 f\left(\frac{x+y}{2^{2}}+\frac{z}{2}\right)+2 f\left(\frac{x+y}{2^{2}}-\frac{z}{2}\right)-f\left(\frac{x+y}{2}\right)-f(z)\right)\right\| \tag{6}\\
& \left\|2 f\left(\frac{x+y}{2^{2}}+\frac{z}{2}\right)+2 f\left(\frac{x+y}{2^{2}}-\frac{z}{2}\right)-f\left(\frac{x+y}{2}\right)-f(z)\right\| \\
\leq & \left\|\beta\left(f\left(\frac{x+y}{2}+z\right)+f\left(\frac{x+y}{2}-z\right)-2 f\left(\frac{x+y}{2}\right)-2 f(z)\right)\right\| \tag{7}
\end{align*}
$$

finaly

$$
\begin{align*}
\|f(x+y)-f(x)-f(y)\| & \leq\left\|\beta_{1}(f(x+y)+f(x-y)-2 f(x))\right\| \\
& +\left\|\beta_{2}\left(2 f\left(\frac{x+y}{2}\right)-f(x)-f(y)\right)\right\| \tag{8}
\end{align*}
$$

in complex Banach spaces
In this paper, we solve and proved the Hyers-Ulam stability for $\left(\beta_{1}, \beta_{2}\right)$-functional inequalities (1), ie the $\left(\beta_{1}, \beta_{2}\right)$-functional inequalities with three variables. Under suitable assumptions on spaces X and Y, we will prove that the mappings satisfy the $\left(\beta_{1}, \beta_{2}\right)$-functional inequatility (1). Thus, the results in this paper are generalization of those in [3], [4], [14], [21] for $\left(\beta_{1}, \beta_{2}\right)$-functional inequatilies with three variables. The paper is organized as followns: In section preliminaries we remind some basic notations in [3], [7] such as complete generalized metric space and Solutions of the inequalities.
Section 3: In this section, I use the method of the fixed to prove the Hyers-Ulam stability of the addive $\left(\beta_{1}, \beta_{2}\right)$-functional inequalities (1) when X is a real or complete normed space and Y complex Banach space.
Section 4: In this section, I use the method of directly determining the solution for (1) when X is a real or complete normed space and Y complex Banach space.

2. preliminaries

2.1. Complete Generalized Metric space And Solutions of the Iinequalities

Theorem 1. Let (X, d) be a complete generalized metric space and let $J: X \rightarrow X$ is a strictly contractive mapping with Lipschitz constant $L<1$. Then for each given element $x \in X$, either

$$
d\left(J^{n}, J^{n+1}\right)=\infty
$$

for all nonegative integers n or there exists a positive integer n_{0} such that

1. $d\left(J^{n}, J^{n+1}\right)<\infty, \forall n \geq n_{0}$;
2. The sequence $\left\{J^{n} x\right\}$ converges to a fixed point y^{*} of J;
3. y^{*} is the unique fixed point of J in the set $Y=\left\{y \in X \mid d\left(J^{n}, J^{n+1}\right)<\infty\right\}$;
4. $d\left(y, y^{*}\right) \leq \frac{1}{1-l} d(y, J y) \forall y \in Y$

2.2. Solutions of the Inequalities.

The functional equation

$$
f(x+y)=f(x)+f(y)
$$

is called the cauchuy equation. In particular, every solution of the Cauchuy equation is said to be an additive mapping.

3. Establish the Solution of the Additive $\left(\beta_{1}, \beta_{2}\right)$-Function Inequalities Using a Fixed Point Method

Now, we first study the solutions of (1). Note that for these inequalities, when \mathbf{X} is a real or complete normed space and \mathbf{Y} complex Banach space.

Lemma 2. A mapping $f: \mathbf{X} \rightarrow \mathbf{Y}$ satisfies $f(0)=0$ and

$$
\begin{align*}
& \left\|2 f\left(\frac{x_{1}+x_{2}}{2}+\frac{x_{3}+x_{4}+\ldots+x_{k}}{4}\right)-f\left(x_{1}\right)-f\left(x_{2}+\frac{x_{3}+x_{4}+\ldots+x_{k}}{2}\right)\right\|_{\mathbf{Y}} \\
& \quad \leq\left\|\beta_{1}\left(f\left(x_{1}+x_{2}+\frac{x_{3}+x_{4}+\ldots+x_{k}}{2}\right)+f\left(x_{1}-x_{2}-\frac{x_{3}+x_{4}+\ldots+x_{k}}{2}\right)-2 f\left(x_{1}\right)\right)\right\|_{\mathbf{Y}} \\
& \quad+\left\|\beta_{2}\left(f\left(x_{1}+x_{2}+\frac{x_{3}+x_{4}+\ldots+x_{k}}{2}\right)-f\left(x_{1}\right)-f\left(x_{2}+\frac{x_{3}+x_{4}+\ldots+x_{k}}{2}\right)\right)\right\|_{\mathbf{Y}} \tag{9}
\end{align*}
$$

for all $x_{j} \in \mathbf{X}, j=1 \rightarrow n$, then $f: \mathbf{X} \rightarrow \mathbf{Y}$ is additive

Proof. Assume that $f: \mathbf{X} \rightarrow \mathbf{Y}$ satisfies (9)
Replacing $\left(x_{1}, \ldots, x_{n}\right)$ by $(x, 0,0 \ldots, 0)$ in (9), we get

$$
\left\|2 f\left(\frac{x}{2}\right)-f(x)\right\|_{\mathbf{Y}} \leq 0
$$

and so $2 f\left(\frac{x}{2}\right)=f(x)$ for all $x \in \mathbf{X}$.
Thus
$f\left(\frac{x}{2}\right)=\frac{1}{2} f(x)$
for all $x \in \mathbf{X}$ It follows from (9) and (10) that

$$
\begin{align*}
& \left\|f\left(x_{1}+x_{2}+\frac{x_{3}+\ldots+x_{n}}{2}\right)-f\left(x_{1}\right)-f\left(x_{2}+\frac{x_{3}+\ldots+x_{n}}{2}\right)\right\|_{\mathbf{Y}} \\
& =\left\|2 f\left(\frac{x_{1}+x_{2}}{2}+\frac{x_{3}+x_{4}+\ldots+x_{k}}{4}\right)-f\left(x_{1}\right)-f\left(x_{2}+\frac{x_{3}+x_{4}+\ldots+x_{k}}{2}\right)\right\|_{\mathbf{Y}} \\
& \leq\left\|\beta_{1}\left(f\left(x_{1}+x_{2}+\frac{x_{3}+x_{4}+\ldots+x_{k}}{2}\right)+f\left(x_{1}-x_{2}-\frac{x_{3}+x_{4}+\ldots+x_{k}}{2}\right)-2 f\left(x_{1}\right)\right)\right\|_{\mathbf{Y}} \\
& +\left\|\beta_{2}\left(f\left(x_{1}+x_{2}+\frac{x_{3}+x_{4}+\ldots+x_{k}}{2}\right)-f\left(x_{1}\right)-f\left(x_{2}+\frac{x_{3}+x_{4}+\ldots+x_{k}}{2}\right)\right)\right\|_{\mathbf{Y}} \tag{11}
\end{align*}
$$

for all $x_{j} \in \mathbf{X}, j=1 \rightarrow n$ and so

$$
\begin{align*}
& \left(1-\left|\beta_{2}\right|\right)\left\|f\left(x_{1}+x_{2}+\frac{x_{3}+\ldots+x_{n}}{2}\right)-f\left(x_{1}\right)-f\left(x_{2}+\frac{x_{3}+\ldots+x_{n}}{2}\right)\right\|_{\mathbf{Y}} \\
& \leq\left\|\beta_{1}\left(f\left(x_{1}+x_{2}+\frac{x_{3}+x_{4}+\ldots+x_{k}}{2}\right)+f\left(x_{1}-x_{2}-\frac{x_{3}+x_{4}+\ldots+x_{k}}{2}\right)-2 f\left(x_{1}\right)\right)\right\|_{\mathbf{Y}} \tag{12}
\end{align*}
$$

Next we letting $u=x_{1}+x_{2}+\frac{x_{3}+\ldots+x_{n}}{2}, v=x_{1}-x_{2}-\frac{x_{3}+x_{4}+\ldots+x_{k}}{2}$ in (12), we get

$$
\begin{align*}
&\left(1-\left|\beta_{2}\right|\right)\left\|f(u)-f\left(\frac{u+v}{2}\right)-f\left(\frac{u-v}{2}\right)\right\|_{\mathbf{Y}} \\
& \leq\left|\beta_{1}\right|\left\|f(u)+f(v)-2 f\left(\frac{u+v}{2}\right)\right\|_{\mathbf{Y}} \tag{13}
\end{align*}
$$

for all $u, v \in \mathbf{X}$
and so

$$
\begin{align*}
\frac{1}{2}\left(1-\left|\beta_{2}\right|\right) \| & f(u+v)+f(u-v)-2 f(u) \|_{\mathbf{Y}} \\
& \leq\left|\beta_{1}\right| \mid\|f(u+v)-f(u)-f(v)\|_{\mathbf{Y}} \tag{14}
\end{align*}
$$

for all $u, v \in \mathbf{X}$ It follows from (12) and (14) that

$$
\begin{align*}
& \frac{1}{2}\left(1-\left|\beta_{2}\right|\right)^{2}\left\|f\left(x_{1}+x_{2}+\frac{x_{3}+\ldots+x_{n}}{2}\right)-f\left(x_{1}\right)-f\left(x_{2}+\frac{x_{3}+\ldots+x_{n}}{2}\right)\right\|_{\mathbf{Y}} \\
& \leq\left|\beta_{1}\right|^{2}\left\|f\left(x_{1}+x_{2}+\frac{x_{3}+\ldots+x_{n}}{2}\right)-f\left(x_{1}\right)-f\left(x_{2}+\frac{x_{3}+\ldots+x_{n}}{2}\right)\right\|_{\mathbf{Y}} \tag{15}
\end{align*}
$$

Since $\sqrt{2}\left|\beta_{1}\right|+\left|\beta_{2}\right|<1$
and so

$$
f\left(x_{1}+x_{2}+\frac{x_{3}+\ldots+x_{n}}{2}\right)=f\left(x_{1}\right)+f\left(x_{2}+\frac{x_{3}+\ldots+x_{n}}{2}\right)
$$

. for all $x_{j} \in \mathbf{X}, j=1 \rightarrow n$. Thus f is additive.
Theorem 3. Suppose $\varphi: \mathbf{X}^{n} \rightarrow[0, \infty)$ be a function such that there exists an $L<1$ with
$\varphi\left(x_{1}, x_{2}, \ldots, x_{n}\right) \leq 2 L \varphi\left(\frac{x_{1}}{2}, \frac{x_{2}}{2}, \ldots, \frac{x_{n}}{2}\right)$
for all $x, y, z \in \mathbf{X}$. If $f: \mathbf{X} \rightarrow \mathbf{Y}$ be a mapping satisfy $f(0)=0$ and

$$
\begin{align*}
& \left\|2 f\left(\frac{x_{1}+x_{2}}{2}+\frac{x_{3}+x_{4}+\ldots+x_{k}}{4}\right)-f\left(x_{1}\right)-f\left(x_{2}+\frac{x_{3}+x_{4}+\ldots+x_{k}}{2}\right)\right\|_{\mathbf{Y}} \\
& \quad \leq\left\|\beta_{1}\left(f\left(x_{1}+x_{2}+\frac{x_{3}+x_{4}+\ldots+x_{k}}{2}\right)+f\left(x_{1}-x_{2}-\frac{x_{3}+x_{4}+\ldots+x_{k}}{2}\right)-2 f\left(x_{1}\right)\right)\right\|_{\mathbf{Y}} \\
& \quad+\left\|\beta_{2}\left(f\left(x_{1}+x_{2}+\frac{x_{3}+x_{4}+\ldots+x_{k}}{2}\right)-f\left(x_{1}\right)-f\left(x_{2}+\frac{x_{3}+x_{4}+\ldots+x_{k}}{2}\right)\right)\right\|_{\mathbf{Y}} \\
& \quad+\varphi\left(x_{1}, x_{2}, \ldots, x_{n}\right) \tag{17}
\end{align*}
$$

for all $x_{j} \in \mathbf{X}, j=1 \rightarrow n$.
Then there exists a unique mapping $\psi: \mathbf{X} \rightarrow \mathbf{Y}$ such that

$$
\begin{equation*}
\|f(x)-\psi(x)\|_{\mathbb{Y}} \leq \frac{1}{(1-L)} \varphi(x, 0, \ldots, 0) \tag{18}
\end{equation*}
$$

for all $x \in \mathbf{X}$

Proof. Replacing $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ by $(x, 0, \ldots, 0)$ in (17), we get

$$
\begin{equation*}
\left\|2 f\left(\frac{x}{2}\right)-f(x)\right\|_{\mathbb{Y}} \leq \varphi(x, 0, \ldots, 0) \tag{19}
\end{equation*}
$$

for all $x \in \mathbf{X}$.
Consider the set

$$
\mathbb{S}:=\{h: \mathbf{X} \rightarrow \mathbf{Y}, h(0)=0\}
$$

and introduce the generalized metric on \mathbb{S} :

$$
d(g, h):=\inf \{\lambda \in \mathbb{R}:\|g(x)-h(x)\| \leq \lambda \varphi(x, 0, \ldots, 0), \forall x \in \mathbf{X}\}
$$

where, as usual, inf $\phi=+\infty$. It is easy to show that (\mathbb{S}, d) is complete (see[16]) Now we cosider the linear mapping $J: \mathbb{S} \rightarrow \mathbb{S}$ such that

$$
J g(x):=2 g\left(\frac{x}{2}\right)
$$

for all $x \in \mathbf{X}$. Let $g, h \in \mathbb{S}$ be given such that $d(g, h)=\varepsilon$. Then

$$
\|g(x)-h(x)\| \leq \varepsilon \varphi(x, 0, \ldots, 0)
$$

for all $x \in \mathbf{X}$.
Hence

$$
\begin{aligned}
\|\operatorname{Jg}(x)-\operatorname{Jh}(x)\| & =\left\|2 g\left(\frac{x}{2}\right)-2 h f\left(\frac{x}{2}\right)\right\| \leq 2 \varepsilon \varphi\left(\frac{x}{2}, 0, \ldots, 0\right) \\
& \leq 2 \varepsilon \frac{L}{2} \varphi(x, 0, \ldots, 0) \leq \operatorname{L\varepsilon } \varphi(x, 0, \ldots, 0)
\end{aligned}
$$

for all $x \in \mathbf{X}$. So $d(g, h)=\varepsilon$ implies that $d(J g, J h) \leq L \cdot \varepsilon$. This means that

$$
d(J g, J h) \leq L d(g, h)
$$

for all $g, h \in \mathbb{S}$ It folows from (19) that

$$
d(f, J f) \leq 1
$$

By Theorem 1, there exists a mapping $\psi: \mathbf{X} \rightarrow \mathbf{Y}$ satisfying the fllowing:

1. ψ is a fixed point of J, ie.,

$$
\begin{equation*}
\psi(x)=2 \psi\left(\frac{x}{2}\right) \tag{20}
\end{equation*}
$$

for all $x \in \mathbf{X}$. The mapping ψ is a unique fixed point J in the set

$$
\mathbb{M}=\{g \in \mathbb{S}: d(f, g)<\infty\}
$$

This implies that ψ is a unique mapping satisfying (20) such that there exists a $\lambda \in(0, \infty)$ satisfying

$$
\|f(x)-\psi(x)\| \leq \lambda \varphi(x, 0, \ldots, 0)
$$

for all $x \in \mathbf{X}$
2. $d\left(J^{l} f, \psi\right) \rightarrow 0$ as $l \rightarrow \infty$. This implies equality

$$
\lim _{l \rightarrow \infty} 2^{n} f\left(\frac{x}{2^{n}}\right)=\psi(x)
$$

for all $x \in \mathbb{X}$
3. $d(f, \psi) \leq \frac{1}{1-L} d(f, J f)$. which implies

$$
\|f(x)-\psi(x)\| \leq \frac{1}{1-L} \varphi(x, 0, \ldots, 0)
$$

for all $x \in X$. It follows (16) and (17) that

$$
\begin{align*}
& \left\|2 f\left(\frac{x_{1}+x_{2}}{2}+\frac{x_{3}+x_{4}+\ldots+x_{k}}{4}\right)-f\left(x_{1}\right)-f\left(x_{2}+\frac{x_{3}+x_{4}+\ldots+x_{k}}{2}\right)\right\|_{\mathbf{Y}} \\
& =\lim _{n \rightarrow \infty} 2^{n}\left\|2 f\left(\frac{x_{1}+x_{2}}{2^{n+1}}+\frac{x_{3}+x_{4}+\ldots+x_{n}}{2^{n+2}}\right)-f\left(\frac{x_{1}}{2^{n}}\right)-f\left(\frac{x_{2}}{2^{n}}+\frac{x_{3}+x_{4}+\ldots+x_{n}}{2^{n+1}}\right)\right\|_{\mathbf{Y}} \\
& \leq \lim _{n \rightarrow \infty} 2^{n}\left|\beta_{1}\right|\left\|f\left(\frac{x_{1}+x_{2}}{2^{n}}+\frac{x_{3}+x_{4}+\ldots+x_{n}}{2^{n+1}}\right)-f\left(\frac{x_{1}-x_{2}}{2^{n}}-\frac{x_{3}+x_{4}+\ldots+x_{n}}{2^{n+1}}\right)-2 f\left(\frac{x_{1}}{2 n}\right)\right\|_{\mathbf{Y}} \\
& +\lim _{n \rightarrow \infty} 2^{n}\left|\beta_{2}\right|\left\|f\left(\frac{x_{1}+x_{2}}{2^{n}}+\frac{x_{3}+x_{4}+\ldots+x_{n}}{2^{n+1}}\right)-f\left(\frac{x_{1}}{2^{n}}\right)-f\left(\frac{x_{2}}{2^{n}}+\frac{x_{3}+x_{4}+\ldots+x_{n}}{2^{n+1}}\right)\right\|_{\mathbf{Y}} \\
& +\lim _{n \rightarrow \infty} 2^{n} \varphi\left(\frac{x_{1}}{2^{n}}, \frac{x_{2}}{2^{n}}, \ldots, \frac{x_{n}}{2^{n}}\right) \\
& =\left\|\beta_{1}\left(\psi\left(x_{1}+x_{2}+\frac{x_{3}+x_{4}+\ldots+x_{k}}{2}\right)+\psi\left(x_{1}-x_{2}-\frac{x_{3}+x_{4}+\ldots+x_{k}}{2}\right)-2 \psi\left(x_{1}\right)\right)\right\|_{\mathbf{Y}} \\
& +\left\|\beta_{2}\left(\psi\left(x_{1}+x_{2}+\frac{x_{3}+x_{4}+\ldots+x_{k}}{2}\right)-\psi\left(x_{1}\right)-\psi\left(x_{2}+\frac{x_{3}+x_{4}+\ldots+x_{k}}{2}\right)\right)\right\|_{\mathbf{Y}} \tag{21}
\end{align*}
$$

for all $x_{j} \in \mathbf{X}, j=1 \rightarrow n$. So

$$
\begin{aligned}
& \left\|2 \psi\left(\frac{x_{1}+x_{2}}{2}+\frac{x_{3}+x_{4}+\ldots+x_{k}}{4}\right)-\psi\left(x_{1}\right)-\psi\left(x_{2}+\frac{x_{3}+x_{4}+\ldots+x_{k}}{2}\right)\right\|_{\mathbf{Y}} \\
& \quad \leq\left\|\beta_{1}\left(\psi\left(x_{1}+x_{2}+\frac{x_{3}+x_{4}+\ldots+x_{k}}{2}\right)+\psi\left(x_{1}-x_{2}-\frac{x_{3}+x_{4}+\ldots+x_{k}}{2}\right)-2 \psi\left(x_{1}\right)\right)\right\|_{\mathbf{Y}} \\
& \quad+\left\|\beta_{2}\left(\psi\left(x_{1}+x_{2}+\frac{x_{3}+x_{4}+\ldots+x_{k}}{2}\right)-\psi\left(x_{1}\right)-\psi\left(x_{2}+\frac{x_{3}+x_{4}+\ldots+x_{k}}{2}\right)\right)\right\|_{\mathbf{Y}}
\end{aligned}
$$

for all $x_{j} \in \mathbf{X}, j=1 \rightarrow n$. By Lemma 2, the mapping $\psi: \mathbf{X} \rightarrow \mathbf{Y}$ is additive. Ei

$$
\psi\left(x_{1}+x_{2}+\frac{x_{3}+x_{4}+\ldots+x_{k}}{2}\right)-\psi\left(x_{1}\right)-\psi\left(x_{2}+\frac{x_{3}+x_{4}+\ldots+x_{k}}{2}\right)=0
$$

Theorem 4. Suppose $\varphi: \mathbf{X}^{n} \rightarrow[0, \infty)$ be a function such that there exists an $L<1$ with
$\varphi\left(\frac{x_{1}}{2}, \frac{x_{2}}{2}, \ldots, \frac{x_{n}}{2}\right) \leq \frac{L}{2} \varphi\left(x_{1}, x_{2}, \ldots, x_{n}\right)$
for all $x, y, z \in \mathbf{X}$. If $f: \mathbf{X} \rightarrow \mathbf{Y}$ be a mapping satisfy $f(0)=0$ and

$$
\begin{align*}
& \left\|2 f\left(\frac{x_{1}+x_{2}}{2}+\frac{x_{3}+x_{4}+\ldots+x_{k}}{4}\right)-f\left(x_{1}\right)-f\left(x_{2}+\frac{x_{3}+x_{4}+\ldots+x_{k}}{2}\right)\right\|_{\mathbf{Y}} \\
& \quad \leq\left\|\beta_{1}\left(f\left(x_{1}+x_{2}+\frac{x_{3}+x_{4}+\ldots+x_{k}}{2}\right)+f\left(x_{1}-x_{2}-\frac{x_{3}+x_{4}+\ldots+x_{k}}{2}\right)-2 f\left(x_{1}\right)\right)\right\|_{\mathbf{Y}} \\
& \quad+\left\|\beta_{2}\left(f\left(x_{1}+x_{2}+\frac{x_{3}+x_{4}+\ldots+x_{k}}{2}\right)-f\left(x_{1}\right)-f\left(x_{2}+\frac{x_{3}+x_{4}+\ldots+x_{k}}{2}\right)\right)\right\|_{\mathbf{Y}} \\
& \quad+\varphi\left(x_{1}, x_{2}, \ldots, x_{n}\right) \tag{23}
\end{align*}
$$

for all $x_{j} \in \mathbf{X}, j=1 \rightarrow n$.
Then there exists a unique mapping $\psi: \mathbf{X} \rightarrow \mathbf{Y}$ such that
$\|f(x)-\psi(x)\|_{\mathbf{Y}} \leq \frac{L}{(1-L)} \varphi(x, 0, \ldots, 0)$
for all $x \in \mathbf{X}$.
Proof. Replacing $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ by $(x, 0, \ldots, 0)$ in (23), we get
$\left\|2 f\left(\frac{x}{2}\right)-f(x)\right\|_{\mathbf{Y}} \leq \varphi(x, 0, \ldots, 0)$
for all $x \in \mathbf{X}$.
So
$\left\|f(x)-\frac{1}{2} f(2 x)\right\|_{\mathbf{Y}} \leq \frac{1}{2} \varphi(2 x, 0, \ldots, 0)$
for all $x \in \mathbf{X}$.
Suppose (\mathbb{S}, d) be the generalized metric space defined in the proof of Theeorem 3.2 Now we cosider the linear mapping $J: \mathbb{S} \rightarrow \mathbb{S}$ such that

$$
J g(x):=\frac{1}{2} g(2 x)
$$

for all $x \in \mathbf{X}$. That It follows from (26)
$\left\|f(x)-\frac{1}{2} f(2 x)\right\|_{\mathbf{Y}} \leq \frac{1}{2} \varphi(2 x, 0, \ldots, 0) \leq L \varphi(x, 0, \ldots, 0)$
The rest of the proof is similar to proof of Theorem 3.
From proving the theorems we have consequences:

Corollary 1. Let $r>1$ and θ be nonnegative real numbers and let $f: \mathbf{X} \rightarrow \mathbf{Y}$ be a mapping satisfy $f(0)=0$ and

$$
\begin{align*}
& \left\|2 f\left(\frac{x_{1}+x_{2}}{2}+\frac{x_{3}+x_{4}+\ldots+x_{k}}{4}\right)-f\left(x_{1}\right)-f\left(x_{2}+\frac{x_{3}+x_{4}+\ldots+x_{k}}{2}\right)\right\|_{\mathbf{Y}} \\
& \quad \leq\left\|\beta_{1}\left(f\left(x_{1}+x_{2}+\frac{x_{3}+x_{4}+\ldots+x_{k}}{2}\right)+f\left(x_{1}-x_{2}-\frac{x_{3}+x_{4}+\ldots+x_{k}}{2}\right)-2 f\left(x_{1}\right)\right)\right\|_{\mathbf{Y}} \\
& \quad+\left\|\beta_{2}\left(f\left(x_{1}+x_{2}+\frac{x_{3}+x_{4}+\ldots+x_{k}}{2}\right)-f\left(x_{1}\right)-f\left(x_{2}+\frac{x_{3}+x_{4}+\ldots+x_{k}}{2}\right)\right)\right\|_{\mathbf{Y}} \\
& \quad+\theta\left(\left\|x_{1}\right\|^{r}+\left\|x_{2}\right\|^{r}+\ldots+\left\|x_{k}\right\|^{r}\right) \tag{27}
\end{align*}
$$

for all $x_{j} \in \mathbf{X}$ for all $j=1 \rightarrow k$.
Then there exists a unique mapping $\psi: \mathbf{X} \rightarrow \mathbf{Y}$ such that

$$
\begin{equation*}
\|f(x)-\boldsymbol{\psi}(x)\|_{\mathbf{Y}} \leq \frac{2^{r} \theta}{2^{r}-2}\|x\|_{\mathbf{X}}^{r} \tag{28}
\end{equation*}
$$

for all $x \in \mathbf{X}$.
Corollary 2. Let $r<1$ and θ be nonnegative real numbers and let $f: \mathbf{X} \rightarrow \mathbf{Y}$ be a mapping satisfy $f(0)=0$ and

$$
\begin{align*}
& \left\|2 f\left(\frac{x_{1}+x_{2}}{2}+\frac{x_{3}+x_{4}+\ldots+x_{k}}{4}\right)-f\left(x_{1}\right)-f\left(x_{2}+\frac{x_{3}+x_{4}+\ldots+x_{k}}{2}\right)\right\|_{\mathbf{Y}} \\
& \quad \leq\left\|\beta_{1}\left(f\left(x_{1}+x_{2}+\frac{x_{3}+x_{4}+\ldots+x_{k}}{2}\right)+f\left(x_{1}-x_{2}-\frac{x_{3}+x_{4}+\ldots+x_{k}}{2}\right)-2 f\left(x_{1}\right)\right)\right\|_{\mathbf{Y}} \\
& \quad+\left\|\beta_{2}\left(f\left(x_{1}+x_{2}+\frac{x_{3}+x_{4}+\ldots+x_{k}}{2}\right)-f\left(x_{1}\right)-f\left(x_{2}+\frac{x_{3}+x_{4}+\ldots+x_{k}}{2}\right)\right)\right\|_{\mathbf{Y}} \\
& \quad+\theta\left(\left\|x_{1}\right\|^{r}+\left\|x_{2}\right\|^{r}+\ldots+\left\|x_{k}\right\|^{r}\right) \tag{29}
\end{align*}
$$

for all $x_{j} \in \mathbf{X}$ for all $j=1 \rightarrow k$.
Then there exists a unique mapping $\psi: \mathbf{X} \rightarrow \mathbf{Y}$ such that
$\|f(x)-\psi(x)\|_{\mathbf{Y}} \leq \frac{2^{r} \theta}{2-2^{r}}\|x\|_{\mathbf{X}}^{r}$
for all $x \in \mathbf{X}$.

4. Establish the Solution of the Additive $\left(\beta_{1}, \beta_{2}\right)$-Function Inequalities Using a Direct Method

Next, we study the solutions of (1) . Note that for these inequalities, when \mathbf{X} be a real or complete normed space and \mathbf{Y} complex Banach space.

Theorem 5. Suppose $\varphi: \mathbf{X}^{n} \rightarrow[0, \infty)$ be a function and let $f: \mathbf{X} \rightarrow \mathbf{Y}$ be a mapping such that $\phi\left(x_{1}, x_{2}, \ldots, x_{n}\right):=\sum_{j=1}^{\infty} 2^{j} \varphi\left(\frac{x_{1}}{2^{j}}, \frac{x_{2}}{2^{j}}, \ldots, \frac{x_{n}}{2^{j}}\right)<\infty$
and let $f: \mathbf{X} \rightarrow \mathbf{Y}$ be a mapping $f(0)=0$ and

$$
\begin{align*}
& \left\|2 f\left(\frac{x_{1}+x_{2}}{2}+\frac{x_{3}+x_{4}+\ldots+x_{k}}{4}\right)-f\left(x_{1}\right)-f\left(x_{2}+\frac{x_{3}+x_{4}+\ldots+x_{k}}{2}\right)\right\|_{\mathbf{Y}} \\
& \quad \leq\left\|\beta_{1}\left(f\left(x_{1}+x_{2}+\frac{x_{3}+x_{4}+\ldots+x_{k}}{2}\right)+f\left(x_{1}-x_{2}-\frac{x_{3}+x_{4}+\ldots+x_{k}}{2}\right)-2 f\left(x_{1}\right)\right)\right\|_{\mathbf{Y}} \\
& \quad+\left\|\beta_{2}\left(f\left(x_{1}+x_{2}+\frac{x_{3}+x_{4}+\ldots+x_{k}}{2}\right)-f\left(x_{1}\right)-f\left(x_{2}+\frac{x_{3}+x_{4}+\ldots+x_{k}}{2}\right)\right)\right\|_{\mathbf{Y}} \\
& \quad+\varphi\left(x_{1}, x_{2}, \ldots, x_{n}\right) \tag{32}
\end{align*}
$$

for all $x_{j} \in \mathbf{X}, j=1 \rightarrow n$.
Then there exists a unique mapping $\psi: \mathbf{X} \rightarrow \mathbf{Y}$ such that
$\|f(x)-\psi(x)\|_{\mathbf{Y}} \leq \varphi(x, 0, \ldots, 0)$
for all $x \in \mathbf{X}$.
Proof. Replacing $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ by $(x, 0, \ldots, 0)$ in (32), we get

$$
\begin{equation*}
\left\|2 f\left(\frac{x}{2}\right)-f(x)\right\|_{\mathbf{Y}} \leq \varphi(x, x, 0, \ldots, 0) \tag{34}
\end{equation*}
$$

for all $x \in X$
. Hence

$$
\begin{align*}
\| 2^{l} f\left(\frac{x}{2^{l}}\right) & -2^{m} f\left(\frac{x}{2^{m}}\right) \|_{\mathbf{Y}} \\
& \leq \sum_{j=l}^{m-1}\left\|2^{j} f\left(\frac{x}{2^{j}}\right)-2^{j+1} f\left(\frac{x}{2^{j+1}}\right)\right\|_{\mathbf{Y}} \\
& \leq \sum_{j=l}^{m-1} 2^{j} \varphi\left(\frac{x}{2^{j+1}}, 0, \ldots, 0\right) \tag{35}
\end{align*}
$$

for all nonnegative integers m and l with $m>l$ and all $x \in \mathbf{X}$. It follows from (35) that the sequence $\left\{2^{n} f\left(\frac{x}{2^{n}}\right)\right\}$ is a Cauchy sequence for all $x \in \mathbf{X}$. Since \mathbf{Y} is complete, the sequence $\left\{2^{n} f\left(\frac{x}{2^{n}}\right)\right\}$ coverges. So one can define the mapping $\psi: \mathbf{X} \rightarrow \mathbf{Y}$ by
$\psi(x):=\lim _{n \rightarrow \infty} \frac{1}{2^{n}} f\left(2^{n} x\right)$
for all $x \in \mathbf{X}$. Moreover, letting $l=0$ and passing the limit $m \rightarrow \infty$ in (36), we get (33) It follows from (31) and (32) that

$$
\begin{align*}
& \left\|2 f\left(\frac{x_{1}+x_{2}}{2}+\frac{x_{3}+x_{4}+\ldots+x_{k}}{4}\right)-f\left(x_{1}\right)-f\left(x_{2}+\frac{x_{3}+x_{4}+\ldots+x_{k}}{2}\right)\right\|_{\mathbf{Y}} \\
& =\lim _{n \rightarrow \infty} 2^{n}\left\|2 f\left(\frac{x_{1}+x_{2}}{2^{n+1}}+\frac{x_{3}+x_{4}+\ldots+x_{n}}{2^{n+2}}\right)-f\left(\frac{x_{1}}{2^{n}}\right)-f\left(\frac{x_{2}}{2^{n}}+\frac{x_{3}+x_{4}+\ldots+x_{n}}{2^{n+1}}\right)\right\|_{\mathbf{Y}} \\
& \leq \lim _{n \rightarrow \infty} 2^{n}\left|\beta_{1}\right|\left\|f\left(\frac{x_{1}+x_{2}}{2^{n}}+\frac{x_{3}+x_{4}+\ldots+x_{n}}{2^{n+1}}\right)-f\left(\frac{x_{1}-x_{2}}{2^{n}}-\frac{x_{3}+x_{4}+\ldots+x_{n}}{2^{n+1}}\right)-2 f\left(\frac{x_{1}}{2 n}\right)\right\|_{\mathbf{Y}} \\
& +\lim _{n \rightarrow \infty} 2^{n}\left|\beta_{2}\right|\left\|f\left(\frac{x_{1}+x_{2}}{2^{n}}+\frac{x_{3}+x_{4}+\ldots+x_{n}}{2^{n+1}}\right)-f\left(\frac{x_{1}}{2^{n}}\right)-f\left(\frac{x_{2}}{2^{n}}+\frac{x_{3}+x_{4}+\ldots+x_{n}}{2^{n+1}}\right)\right\|_{\mathbf{Y}} \\
& +\lim _{n \rightarrow \infty} 2^{n} \varphi\left(\frac{x_{1}}{2^{n}}, \frac{x_{2}}{2^{n}}, \ldots, \frac{x_{n}}{2^{n}}\right) \\
& =\left\|\beta_{1}\left(\psi\left(x_{1}+x_{2}+\frac{x_{3}+x_{4}+\ldots+x_{k}}{2}\right)+\psi\left(x_{1}-x_{2}-\frac{x_{3}+x_{4}+\ldots+x_{k}}{2}\right)-2 \psi\left(x_{1}\right)\right)\right\|_{\mathbf{Y}} \\
& +\left\|\beta_{2}\left(\psi\left(x_{1}+x_{2}+\frac{x_{3}+x_{4}+\ldots+x_{k}}{2}\right)-\psi\left(x_{1}\right)-\psi\left(x_{2}+\frac{x_{3}+x_{4}+\ldots+x_{k}}{2}\right)\right)\right\|_{\mathbf{Y}} \tag{37}
\end{align*}
$$

for all $x_{j} \in \mathbf{X}, j=1 \rightarrow n$. So

$$
\begin{aligned}
& \left\|2 \psi\left(\frac{x_{1}+x_{2}}{2}+\frac{x_{3}+x_{4}+\ldots+x_{k}}{4}\right)-\psi\left(x_{1}\right)-\psi\left(x_{2}+\frac{x_{3}+x_{4}+\ldots+x_{k}}{2}\right)\right\|_{\mathbf{Y}} \\
& \quad \leq\left\|\beta_{1}\left(\psi\left(x_{1}+x_{2}+\frac{x_{3}+x_{4}+\ldots+x_{k}}{2}\right)+\psi\left(x_{1}-x_{2}-\frac{x_{3}+x_{4}+\ldots+x_{k}}{2}\right)-2 \psi\left(x_{1}\right)\right)\right\|_{\mathbf{Y}} \\
& \quad+\left\|\beta_{2}\left(\psi\left(x_{1}+x_{2}+\frac{x_{3}+x_{4}+\ldots+x_{k}}{2}\right)-\psi\left(x_{1}\right)-\psi\left(x_{2}+\frac{x_{3}+x_{4}+\ldots+x_{k}}{2}\right)\right)\right\|_{\mathbf{Y}}
\end{aligned}
$$

for all $x_{j} \in \mathbf{X}, j=1 \rightarrow n$. By Lemma 2, the mapping $\psi: \mathbf{X} \rightarrow \mathbf{Y}$ is additive. Ei

$$
\psi\left(x_{1}+x_{2}+\frac{x_{3}+x_{4}+\ldots+x_{k}}{2}\right)-\psi\left(x_{1}\right)-\psi\left(x_{2}+\frac{x_{3}+x_{4}+\ldots+x_{k}}{2}\right)=0
$$

Now, let $\psi^{\prime}: \mathbb{X} \rightarrow \mathbb{Y}$ be another additive mapping satisfying (33). Then we have

$$
\begin{aligned}
\left\|\psi(x)-\psi^{\prime}(x)\right\| & =\left\|2^{q} \psi\left(\frac{x}{2^{q}}\right)-2^{q} \psi^{\prime}\left(\frac{x}{2^{q}}\right)\right\|_{\mathbb{Y}} \\
& \leq\left\|2^{q} \psi\left(\frac{x}{2^{q}}\right)-2^{q} f\left(\frac{x}{2^{q}}\right)\right\|+\left\|2^{q} \psi^{\prime}\left(\frac{x}{2^{q}}\right)-2^{q} f\left(\frac{x}{2^{q}}\right)\right\|_{\mathbb{Y}} \\
& \leq 2^{q+1} \phi\left(\frac{x}{2^{q}}, 0, \ldots, 0\right)
\end{aligned}
$$

which tends to zero as $q \rightarrow \infty$ for all $x \in \mathbf{X}$. So we can conclude that $\psi(x)=\psi^{\prime}(x)$ for all $x \in \mathbf{X}$. This proves the uniqueness of ψ.
Theorem 6. Suppose $\varphi: \mathbf{X}^{n} \rightarrow[0, \infty)$ be a function and let $f: \mathbf{X} \rightarrow \mathbf{Y}$ be a mapping such that $\phi\left(x_{1}, x_{2}, \ldots, x_{n}\right):=\sum_{j=1}^{\infty} \frac{1}{2^{j}} \varphi\left(2^{j} x_{1}, 2^{j} x_{2}, \ldots, 2^{j} x_{n}\right)<\infty$
and let $f: \mathbf{X} \rightarrow \mathbf{Y}$ be a mapping $f(0)=0$ and

$$
\begin{align*}
& \left\|2 f\left(\frac{x_{1}+x_{2}}{2}+\frac{x_{3}+x_{4}+\ldots+x_{k}}{4}\right)-f\left(x_{1}\right)-f\left(x_{2}+\frac{x_{3}+x_{4}+\ldots+x_{k}}{2}\right)\right\|_{\mathbf{Y}} \\
& \quad \leq\left\|\beta_{1}\left(f\left(x_{1}+x_{2}+\frac{x_{3}+x_{4}+\ldots+x_{k}}{2}\right)+f\left(x_{1}-x_{2}-\frac{x_{3}+x_{4}+\ldots+x_{k}}{2}\right)-2 f\left(x_{1}\right)\right)\right\|_{\mathbf{Y}} \\
& \quad+\left\|\beta_{2}\left(f\left(x_{1}+x_{2}+\frac{x_{3}+x_{4}+\ldots+x_{k}}{2}\right)-f\left(x_{1}\right)-f\left(x_{2}+\frac{x_{3}+x_{4}+\ldots+x_{k}}{2}\right)\right)\right\|_{\mathbf{Y}} \\
& \quad+\varphi\left(x_{1}, x_{2}, \ldots, x_{n}\right) \tag{39}
\end{align*}
$$

for all $x_{j} \in \mathbf{X}, j=1 \rightarrow n$.
Then there exists a unique mapping $\psi: \mathbf{X} \rightarrow \mathbf{Y}$ such that
$\|f(x)-\psi(x)\|_{\mathbf{Y}} \leq \varphi(x, 0, \ldots, 0)$
for all $x \in \mathbf{X}$.
Proof. Replacing $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ by $(x, 0, \ldots, 0)$ in (39), we get

$$
\begin{equation*}
\left\|2 f\left(\frac{x}{2}\right)-f(x)\right\|_{\mathbf{Y}} \leq \varphi(x, 0, \ldots, 0) \tag{41}
\end{equation*}
$$

for all $x \in X$. So
$\left\|f(x)-\frac{1}{2} f(2 x)\right\|_{\mathbf{Y}} \leq \frac{1}{2} \varphi(2 x, 0, \ldots, 0)$
for all $x \in X$. Hence

$$
\begin{align*}
\| \frac{1}{2^{l}} f\left(2^{l} x\right) & -\frac{1}{2^{m}} f\left(2^{m} x\right) \|_{\mathbb{Y}} \\
& \leq \sum_{j=l}^{m-1}\left\|\frac{1}{2^{j}} f\left(2^{j} x\right)-\frac{1}{2^{j+1}} f\left(2^{j+1} x\right)\right\|_{\mathbb{Y}} \\
& \leq \sum_{j=l}^{m-1} \frac{1}{2^{j+1}} \varphi\left(2^{j} x, 0, \ldots, 0 x\right) \tag{43}
\end{align*}
$$

for all nonnegative integers m and l with $m>l$ and all $x \in \mathbf{X}$. It follows from (42) that the sequence $\left\{\frac{1}{2^{n}} f\left(2^{n} x\right)\right\}$ is a Cauchy sequence for all $x \in \mathbf{X}$. Since \mathbf{Y} is complete, the sequence $\left\{\frac{1}{2^{n}} f\left(2^{n} x\right)\right\}$ coverges. So one can define the mapping $\psi: \mathbf{X} \rightarrow \mathbf{Y}$ by

$$
\begin{equation*}
\psi(x):=\lim _{n \rightarrow \infty} \frac{1}{2^{n}} f\left(2^{n} x\right) \tag{44}
\end{equation*}
$$

Moreover, letting $l=0$ and passing the limit $m \rightarrow \infty$ in (42), we get (40).
The rest of the proof is similar to the proof of theorem 5.
From proving the theorems we have consequences:

Corollary 3. Let $r>1$ and θ be nonnegative real numbers and let $f: \mathbf{X} \rightarrow \mathbf{Y}$ be a mapping satisfy $f(0)=0$ and

$$
\begin{align*}
& \left\|2 f\left(\frac{x_{1}+x_{2}}{2}+\frac{x_{3}+x_{4}+\ldots+x_{k}}{4}\right)-f\left(x_{1}\right)-f\left(x_{2}+\frac{x_{3}+x_{4}+\ldots+x_{k}}{2}\right)\right\|_{\mathbf{Y}} \\
& \quad \leq\left\|\beta_{1}\left(f\left(x_{1}+x_{2}+\frac{x_{3}+x_{4}+\ldots+x_{k}}{2}\right)+f\left(x_{1}-x_{2}-\frac{x_{3}+x_{4}+\ldots+x_{k}}{2}\right)-2 f\left(x_{1}\right)\right)\right\|_{\mathbf{Y}} \\
& \quad+\left\|\beta_{2}\left(f\left(x_{1}+x_{2}+\frac{x_{3}+x_{4}+\ldots+x_{k}}{2}\right)-f\left(x_{1}\right)-f\left(x_{2}+\frac{x_{3}+x_{4}+\ldots+x_{k}}{2}\right)\right)\right\|_{\mathbf{Y}} \\
& \quad+\theta\left(\left\|x_{1}\right\|^{r}+\left\|x_{2}\right\|^{r}+\ldots+\left\|x_{n}\right\|^{r}\right) \tag{45}
\end{align*}
$$

for all $x_{j} \in \mathbf{X}, j=1 \rightarrow k$.
Then there exists a unique mapping $\psi: \mathbf{X} \rightarrow \mathbf{Y}$ such that

$$
\begin{equation*}
\|f(x)-\psi(x)\|_{\mathbf{Y}} \leq \frac{2^{r} \theta}{2^{r}-2}\|x\|_{\mathbf{X}}^{r} \tag{46}
\end{equation*}
$$

Corollary 4. Let $r<1$ and θ be nonnegative real numbers and let $f: \mathbf{X} \rightarrow \mathbf{Y}$ be a mapping satisfy $f(0)=0$ and

$$
\begin{align*}
& \left\|2 f\left(\frac{x_{1}+x_{2}}{2}+\frac{x_{3}+x_{4}+\ldots+x_{k}}{4}\right)-f\left(x_{1}\right)-f\left(x_{2}+\frac{x_{3}+x_{4}+\ldots+x_{k}}{2}\right)\right\|_{\mathbf{Y}} \\
& \quad \leq\left\|\beta_{1}\left(f\left(x_{1}+x_{2}+\frac{x_{3}+x_{4}+\ldots+x_{k}}{2}\right)+f\left(x_{1}-x_{2}-\frac{x_{3}+x_{4}+\ldots+x_{k}}{2}\right)-2 f\left(x_{1}\right)\right)\right\|_{\mathbf{Y}} \\
& \quad+\left\|\beta_{2}\left(f\left(x_{1}+x_{2}+\frac{x_{3}+x_{4}+\ldots+x_{k}}{2}\right)-f\left(x_{1}\right)-f\left(x_{2}+\frac{x_{3}+x_{4}+\ldots+x_{k}}{2}\right)\right)\right\|_{\mathbf{Y}} \\
& \theta\left(\left\|x_{1}\right\|^{r}+\left\|x_{2}\right\|^{r}+\ldots+\left\|x_{n}\right\|^{r}\right) \tag{47}
\end{align*}
$$

for all $x_{j} \in \mathbb{X}, j=1 \rightarrow k$.
Then there exists a unique mapping $\psi: \mathbf{X} \rightarrow \mathbf{Y}$ such that

$$
\begin{equation*}
\|f(x)-\psi(x)\|_{\mathbb{Y}} \leq \frac{2^{r} \theta}{2-2^{r}}\|x\|_{\mathbf{X}}^{r} \tag{48}
\end{equation*}
$$

for all $x \in \mathbf{X}$.

5. Conclusion

In this paper, I have shown that the solutions of the $\left(\beta_{1}, \beta_{2}\right)$-functional inequalities are additive mappings. The Hyers-Ulam stability for these given from theorems. These are the main results of the paper, which are the generalization of the results [3], [4], [14], [21].

References

[1] T.Aoki, On the stability of the linear transformation in Banach space, J. Math. Soc. Japan 2(1950), 64-66.
[2] A.Bahyrycz, M. Piszczek, Hyers stability of the Jensen function equation, Acta Math. Hungar.,142 (2014),353-365.
[3] Ly Van An, Hyers-Ulam stability of functional inequalities with three variable in Banach spaces and Non-Archemdean Banach spaces International Journal of Mathematical Analysis Vol.13, 2019, no. 11. 519-53014), 296-310..https://doi.org/10.12988/ijma.2019.9954.
[4] Ly Van An, Hyers-Ulam stability of β-functional inequalities with three variable in non-Archemdean Banach spaces and complex Banach spaces International Journal of Mathematical Analysis Vol. 14, 2020, no. 5, 219-239 .HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ijma.2020.91169. https://doi.org/10.12988/ijma.2019.9954.
[5] M.Balcerowski, On the functional equations related to a problem of z Boros and Z. Dróczy, Acta Math. Hungar.,138 (2013), 329-340.
[6] L. CADARIU ?, V. RADU, Fixed points and the stability of Jensen's functional equation, J. Inequal. Pure Appl. Math. 4, no. 1, Art. ID 4 (2003).
[7] J. DIAZ, B. MARGOLIS, A fixed point theorem of the alternative for contractions on a generalized complete metric space, Bull. Am. Math. Soc. 74 (1968), 305-309.
[8] W Fechner, On some functional inequalities related to the logarithmic mean, Acta Math., Hungar., 128 (2010,)31-45, 303-309 .
[9] W. Fechner, Stability of a functional inequlities associated with the Jordan-von Neumann functional equation, Aequationes Math. 71 (2006), 149-161.
[10] Pascus. Găvruta, A generalization of the Hyers-Ulam -Rassias stability of approximately additive mappings, Journal of mathematical Analysis and Aequations 184 (3) (1994), 431-436. https://doi.org/10.1006/jmaa.1994.1211.
[11] Attila Gilányi, On a problem by K. Nikodem, Math. Inequal. Appl., 5 (2002), 707-710.
[12] Attila Gilányi, Eine zur parallelogrammleichung äquivalente ungleichung, Aequations 5 (2002),707-710. https: //doi.org/ 10.7153/mia-05-71.
[13] Donald H. Hyers, On the stability of the functional equation, Proceedings of the National Academy of the United States of America, 27 (4) (1941), 222.https://doi.org/10.1073/pnas.27.4.222
[14] Jung Rye Lee, Choonkil Park, and Dong Yun Shin. Additive and quadratic functional in equalities in Non-Archimedean normed spaces, International Journal of Mathematical Analysis, 8 (2014), 1233-1247. https://doi.org/10.12988/ijma.2019.9954.
[15] L.Maligranda.Tosio Aoki (1910-1989). International symposium on Banach and function spaces:14/09/2006-17/09/2006, pages 1-23. Yokohama Publishers, 2008.
[16] D. MIHET, V. RADU, On the stability of the additive Cauchy functional equation in random normed spaces, J. Math. Anal. Appl. 343 (2008), 567-572.
[17] A.Najati and G. Z. Eskandani.Stability of a mixed additive and cubic functional equation in quasi-Banach spaces. J. Math. Anal. Appl., 342(2):1318-1331, 2008.
[18] C.Park, Y. Cho, M.Han. Functional inequalities associated with Jordan-von Newman-type additive functional equations, J. Inequality .Appl. ,2007(2007), Article ID 41820, 13 pages.
[19] W. P and J. Schwaiger, A system of two in homogeneous linear functional equations, Acta Math. Hungar 140 (2013), 377-406 .
[20] Jürg Rätz On inequalities assosciated with the jordan-von neumann functional equation, Aequationes matheaticae, 66 (1) (2003), 191-200 https;// doi.org/10-1007/s00010-0032684-8.
[21] Choonkil. Park. The stability an of additive $\left(\beta_{1}, \beta_{2}\right)$-functional inequality in Banach space Journal of mathematical Inequalities Volume 13, Number 1 (2019), 95-104.
[22] Choonkil. Park. Additive β-functional inequalities, Journal of Nonlinear Science and Appl. 7(2014), 296-310.
[23] Choonkil Park, functional in equalities in Non-Archimedean normed spaces. Acta Mathematica Sinica, English Series, 31 (3), (2015), $353-366$. https://doi.org/10.1007/s10114-015-4278-5.
[24] C. PARK, Additive ρ-functional inequalities and equations, J. Math. Inequal. 9 (2015), 17-26.
[25] C. PARK, Additive ρ-functional inequalities in non-Archimedean normed spaces, J. Math. Inequal. 9 (2015), 397-407.
[26] Themistocles M. Rassias, On the stability of the linear mapping in Banach space, proceedings of the American Mathematical Society, 27 (1978), 297-300. https: //doi.org/10.2307/s00010-003-2684-8.
[27] F. SKOF, Propriet locali e approssimazione di operatori, Rend. Sem. Mat. Fis. Milano 53 (1983),113-129.
[28] S. M. ULam. A collection of Mathematical problems, volume 8, Interscience Publishers. New York, 1960. Corresponding Author: Ly Van An.

