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Abstract

A simple proof is given for the explicit formula which allows one to recover a C2−smooth vector field A = A(x)
in R3, decaying at infinity, from the knowledge of its ∇ × A and ∇ · A. The representation of A as a sum of the
gradient field and a divergence-free vector fields is derived from this formula. Similar results are obtained for a
vector field in a bounded C2−smooth domain.
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1. Introduction

In fluid mechanics and electrodynamics one is often interested in the following questions:

Q1. Let A(x), x ∈ R3, be a twice differentiable in R3 vector field vanishing at infinity together with its two
derivatives. Given ∇ × A and ∇ · A, can one recover A(x) uniquely? Can one give an explicit formula for
A(x)?

Q2. Can one find a scalar field u = u(x) and a divergence-free vector field B(x), ∇ ·B = 0, such that

A = ∇u+B,

∫
R3

∇u ·Bdx = 0. (1)

These questions were widely discussed in the literature, for example, in [1] - [3]. Our aim is to give a simple
answer to these questions. By Hm(R3), Hm(D), the usual Sobolev spaces are denoted, Hm(D,w(x)) is the weighted
Sobolev space, where w = w(x) > 0 is the weight function.

2. Answer to question Q1.

Denote ∇×A := a, ∇ ·A := f . Then ∇×∇×A = ∇× a. It is well known that

−∇2A = ∇×∇×A−∇∇ ·A. (2)

Thus,

−∇2A = ∇× a−∇f. (3)
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Let g(x, y) := 1
4π|x−y| . Then

−∆g(x, y) = δ(x− y), (4)

where δ(x) is the delta function. Thus, from (3) one gets

A(x) =

∫
R3

g(x, y)∇× ady −
∫
R3

g(x, y)∇fdy. (5)

This formula gives an analytical representation of A(x) in terms of a = ∇×A and f = ∇ ·A.
To prove the uniqueness of this representation, assume that there are two different vector fields A and F that

have the same a = ∇×A = ∇× F and f = ∇ ·A = ∇ · F . Then, by formula (2), one has

−∇2(A− F ) = 0. (6)

Therefore A − F is a harmonic function in R3 which vanishes at infinity. By the maximum principle such a
function is equal to zero identically.

Thus, A(x) is uniquely determined in R3 by formula (5) if ∇ × A and ∇ · A are known and if A vanishes at
infinity. 2

3. Answer to question Q2.

Formula (5) can be written as

A(x) = ∇×
∫
R3

g(x, y)a(y)dy −∇
∫
R3

g(x, y)f(y)dy, (7)

provided that a(y) and f(y) decay at infinity sufficiently fast, for example, if

|A(x)|+ |∂A(x)|+ |∂2A(x)| ≤ c(1 + |x|)−γ , γ > 3,

where ∂ is an arbitrary first order derivative, so that the following integrations by parts can be justified:

∇×
∫
R3

g(x, y)a(y)dy = −
∫
R3

[∇yg(x, y), a(y)] dy =

∫
R3

g(x, y)∇× a(y)dy, (8)

−∇
∫
R3

g(x, y)f(y)dy =

∫
R3

∇yg(x, y)f(y)dy = −
∫
R3

g(x, y)∇f(y)dy. (9)

One may also assume that A ∈ H2(R3, 1 + |x|γ), γ > 2, in order to justify formulas (1), (5), (7).
It follows from (1) and (7) that

u(x) = −
∫
R3

g(x, y)f(y)dy, B(x) = ∇×
∫
R3

g(x, y)a(y)dy. (10)

To check the second formula (1), it is sufficient to check that∫
R3

∇u · ∇ × pdx = 0, (11)

provided that u = u(x) and p = p(x) decay at infinity sufficiently fast. In our case u is defined by formula (10)
and p(x) =

∫
R3 g(x, y)a(y)dy.

Formula (11) can be verified by a direct calculation. Let ∂u
∂xj

:= u,j and denote by ejmq the antisymmetric

unit tensor: e123 = 1, ejmq =

{
1 if jmq is even,
−1 if jmq is odd.

The triple jmq is called even if by an even number of

transpositions it can be reduced to the triple 123. An odd triple jmq is the one that is not even. A transposition
is the change of the order of two neighboring indices.

The vector product can be written with the help of ejmq as follows:

(A×B)j = ejmqAmBq.
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Here and below summation is understood over the repeated indices. For example, (∇ × p)j = ejmqpq,m, where

pq,m :=
∂pq

∂xm
. With these notations one has∫

R3

∇u · ∇ × pdx = ejmq

∫
R3

u,jpq,mdx = −ejmq

∫
R3

upq,mjdx = 0, (12)

because ejmqpq,mj = 0.
Let us summarize the results.

Theorem 3.1 Assume that a vector field A(x) ∈ H2
loc(R3) decays at infinity sufficiently fast, for example, A(x) ∈

H2(R3, 1 + |x|γ), γ > 2. Then, given a := ∇×A and f := ∇ ·A in R3 one can uniquely recover A by formula (5).
Moreover, one can uniquely represent A(x) by formula (1), where u and B are uniquely defined by formula (10).

Theorem 3.2 Assume that D ⊂ R3 is a bounded domain with C2-smooth boundary S, A(x) ∈ H2(D), a(x) :=
∇ × A(x), f := ∇ · A(x) and ϕ(s) = A|s∈S are known. Then A(x) is uniquely recovered by solving the Dirichlet
problem

−∇2A = ∇× a(x)−∇f(x) in D, A|S = ϕ(s). (13)

Proof. Theorem 3.1 is already proved.
To prove Theorem 3.2 one reduces it to solving problem (13). Existence and uniqueness of the solution to the

Dirichlet problem (13) are known, so Theorem 3.2 is proved. 2

Remark 3.1 It follows from formula (7) that if f = ∇ · A = 0, then A = B = ∇ ×
∫
R3 g(x, y)a(y)dy, and if

a = ∇×A = 0, then A = ∇u, where u is defined in formula (10).

Remark 3.2 Under the assumption γ > 3, vector field A(x) decays at infinity so that formulas (1), (5), and (10)
are valid.

Let us estimate, for example, an integral of the type (9) assuming that |∇f | ≤ c
(1+|x|)γ , γ > 3. Let |x| = r, |y| = ρ,

θ be the angle between x and y, and x is directed along y3 axis. Then one has

I1 : =

∫
R3

dy

|x− y|(1 + |y|)γ
(14)

= 2π

∫ ∞

0

drr2

(1 + r)γ

∫ 1

−1

ds

(r2 − 2rρs+ ρ2)1/2
(15)

=
π

ρ

∫ ∞

0

drr

(1 + r)γ
(r + ρ− |r − ρ|) (16)

=
π

ρ

(
2

∫ ρ

0

drr2

(1 + r)γ
+

∫ ∞

ρ

drr2ρ

(1 + r)γ

)
(17)

≤ π

ρ

(
2
(1 + r)−γ+3

−γ + 3

∣∣∣∣ρ
0

+ 2ρ
(1 + r)−γ+2

−γ + 2

∣∣∣∣∞
ρ

)
(18)

≤ 2π

ρ(γ − 3)
+

2π

γ − 2

1

ργ−2
. (19)

If A ∈ H2(R3, (1 + |x|)γ), γ > 2, let us estimate, for example, the following integral:

I22 :=

(∫
R3

1

|x− y|
|∇ × a|dy

)2

(20)

≤
∫
R3

dy

|x− y|2(1 + |y|)γ

∫
R3

|∇ × a|2(1 + |y|)γdy (21)

≤ c

∫
R3

dy

|x− y|2(1 + |y|)γ
(22)

≤ 2πc

∫ ∞

0

drr2

(1 + r)γ

∫ 1

−1

ds

r2 − 2rρs+ ρ2
(23)

=
πc

ρ

∫ ∞

0

drr

(1 + r)γ
ln

c1 ln ρ

ρ
, ρ > 1. (24)

By c, c1 > 0 estimation constants are denoted.
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