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Abstract

Monge-Ampère type equations arise naturally from many geometric problems. In this paper, we are concerned with
one of these Monge-Ampère type equations on n dimensional sphere Sn and obtain logarithmic gradient estimate
by using Bernstein technique.
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1. Introduction

It is well-known that Yau [1] gave logarithmic gradient estimate of positive solution to harmonic function on complete
Riemannian manifold. As applications, he obtained the Liouville theorem which asserts that a positive harmonic
function on a complete manifold with nonnegative Ricci curvature is constant. Logarithmic gradient estimates
can also be used to derive Harnack inequality through path integral (see also [2]). Its generalization to some fully
nonlinear elliptic equations are interesting problems and the Monge-Ampère type equations are the main concerns
of this paper.

Many fully nonlinear elliptic equations arise from conformal geometry and optics geometry, and there have been
some works concerning the existence or non-existence of global and local gradient estimates for these equations.
Local estimates in general do not hold for fully nonlinear equation due to the counterexample of Pogorelov to
Monge-Ampère equation, which asserted that no interior gradient estimates hold for dimensions n ≥ 3. However,
there are plenty of works concerning global or local gradient estimates for geometric fully nonlinear elliptic equations,
the readers can see these in [3],[4], [5] and [6] etc. for example.

In this paper, we are mainly concerned with the global logarithmic gradient estimate to the following problem

det(uij + uδij) = (u2 + |∇u|2)n
2 f(x) on Sn, (1)

where f is a positive function on Sn. This kind of operator arises from geometry problems. It is related to the
Minkowski problems and problems which prescribing Gauss curvature for a radial graph on Sn. Our main results
are stated in the following.

Theorem 1.1 Let f ∈ C1(Sn) be a positive function and 0 < u ∈ C3(Sn) be an admissible solution of equation (1),

i.e., the matrix {uij + uδij} be positive definite. We further assume that f satisfies |∇f | < nf1− 1
n , then we have

supx∈Sn |∇ log u| ≤ C0, where C0 = C0(n, f, |∇f |).
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The above logarithmic gradient estimate naturally implies the Harnack inequality for the solution, i.e., we obtain
the following Corollary.

Corollary 1.2 Assume f satisfy the same conditions as listed above in Theorem 1.1 and u be a positive admissible
solution of equation (1), then we have the following Harnack inequality for u. Then maxx∈Sn u ≤ Cminx∈Sn u,
where the constant C also depends on n, f and |∇f |.

Since the logarithmic gradient estimate is obtained in Theorem 1.1, the proof of Harnack inequality is easy and
standard. For convenience of the reader, we sketch the proof here. Let x1 and x2 be two points where log(u) attains
its maximum and minimum values on Sn respectively, and let γ be a minimal geodesic connecting x1 and x2, then

log
maxx∈Snu

minx∈Snu
= logu(x1)− logu(x2) = |

∫
γ

dlogu

ds
ds| ≤

∫
γ

|∇logu|ds
∫
γ

|∇u|
u

ds ≤ C,

where the logarithmic gradient estimate is used in the last inequality. Hence the Corollary 1.2 follows from the
above inequality.

Remark 1.3 Since the solution of equation (1) is invariant under multiplying by a constant, we can scale the
solution such that minx∈Sn u = 1. Therefore Harnack inequality in Corollary 1.2 implies global C0 estimate and
logarithmic gradient estimate further implies global C1 estimate of the solution.

In the next section, we will prove Theorem 1.1. We will use some facts concerning the properties of elementary
symmetric function during the proving process. The definitions and the proof of these properties are standard, the
readers can consult them on other reference books, such as [7] or [8], etc..

2. Proof of the logarithmic gradient estimates

To prove Theorem 1.1, we first rewrite (1) into another form with respect to v = logu and then we use Bernstein
technique to derive the gradient estimate of v. In this direction, we consider an auxiliary function G = 1

2 |∇v|2
and calculate at the point where G attains its maximum. For calculation convenience, we choose appropriate
orthonormal frame field at this maximum point.
Proof of Theorem 1.1.

Set v = log u, i.e., u = ev. Then we have ui = evvi, uij = ev(vij + vivj) and u2 + |∇u|2 = e2v(1+ |∇v|2). Hence
the equation (1) can be written as

det(vij + vivj + δij) = (1 + |∇v|2)n
2 f(x), (1)

To obtain gradient estimate of v, we consider the auxiliary function G = 1
2 |∇v|2. Let G attain its maximum at

xo ∈ Sn. Then we can choose a local orthonormal frame field {e1, ..., ei, ..., en} at xo such that

∇v = v1e1, v1 > 0, (2)

and therefore vi = 0 for 2 ≤ i ≤ n.
Since xo is the maximum point of G, we see Gi = 0 and Gij ≤ 0 which means non-positive definite at xo. It

follows from (2) that

Gi =

n∑
k=1

vkvki = 0, i.e., v1i = 0 ∀ 1 ≤ i ≤ n (3)

and

Gij =

n∑
k=1

vkivkj +

n∑
k=1

vkvkij ≤ 0, (4)

From (3), we can rotate the frame e2, ..., en, such that the matrix {vij} is diagonal at xo. Therefore we may
assume at xo

{aij} := {vij + vivj + δij} = diag{1 + v21 , 1 + v22, ..., 1 + vnn} =: diag{λ1, λ2, ..., λn}. (5)
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The following calculation will be fixed at the point xo. Since the matrix {uij + uδij} is positive definite by

admissibility assumption of the solution u, we know the matrix {aij} is also positive definite. Denote F ij = ∂det(akl)
∂aij

.

From the admissibility of the solution we see the matrix {F ij} is also positive definite and therefore F ijGij ≤ 0.
We also know that the matrix {F ij} is diagonal since {aij} is diagonal.

Noting the following Ricci identity on Sn

vjii = viji = viij + vsRsiji = viij + vs(δsjδii − δsiδij) = viij + vj − viδij ,

we obtain from (4) that

F iiGii =

n∑
i=1

F iiv2ii +

n∑
i,s=1

F iiviisvs + v21

n∑
i=2

F ii ≤ 0. (6)

To deal with the term involving three order derivative in (6), we first take covariant derivative of equation (1)
in the direction es and contract with vs to get

n∑
i=1

F ii(viis + 2vivis)vs = (1 + |∇v|2)n
2 fsvs +

n∑
i=1

n(1 + |∇v|2)n
2 −1vivisvsf. (7)

From (2) and (3) we obtain

n∑
i,s=1

F iiviisvs = (1 + |∇v|2)n
2 f1v1.

Substituting the above equality into (6), we get

F iiGii =
n∑

i=2

F iiv2ii + v21

n∑
i=2

F ii + (1 + |∇v|2)n
2 f1v1 ≤ 0. (8)

Recalling that λ1 = a11 = 1+ v21 and λi = aii = 1+ vii for 2 ≤ i ≤ n, therefore for i ≥ 2, we have v2ii = λ2
i − 2λi +1

and (8) becomes

0 ≥
n∑

i=2

F iiλ2
i − 2

n∑
i=2

F iiλi + (1 + v21)

n∑
i=2

F ii + (1 + |∇v|2)n
2 f1v1 := I + II + III + IV. (9)

We calculate I − IV term by term. For convenience, we first introduce some notations. We denote by Sk(λ) the
k−th elementary symmetric function of λ ∈ Rn and Sk(λ|i) the sum of the terms of Sk(λ) not containing the factor
λi. Therefore F ii = Sn−1(λ|i) by our notations.

For term I, we have

I =

n∑
i=2

Sn−1(λ|i)λ2
i =

n∑
i=2

Sn(λ)λi = Sn(λ)S1(λ|1) > 0, (10)

where we have used the fact for every i, Sn−1(λ|i)λi = Sn(λ) and S1(λ|1) > 0.
For term II, we obtain

II = −2

n∑
i=2

F iiλi = −2

n∑
i=2

Sn−1(λ|i)λi = −2(n− 1)Sn(λ). (11)

For term III, we get

III =(1 + v21)

n∑
i=2

F ii = (1 + v21)(

n∑
i=1

Sn−1(λ|i)− Sn−1(λ|1))

=(1 + v21)Sn−1(λ)− Sn(λ),

(12)

where we have used the equality
∑n

i=1 Sn−1(λ|i) = Sn−1(λ).
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Using equation (1), we obtain

IV = Sn(λ)
f1
f
v1. (13)

Substituting (10)-(13) into (9), we get

Sn(λ)S1(λ|1)− 2(n− 1)Sn(λ) + (1 + v21)Sn−1(λ)− Sn(λ) + Sn(λ)
f1
f
v1 ≤ 0. (14)

We still need to estimate Sn−1(λ) in terms of Sn(λ). Recalling the Newton-Maclaurin inequality[
Sn(λ)

] 1
n

≤
[
Sn−1(λ)

Cn−1
n

] 1
n−1

,

we get

Sn−1(λ) ≥ nSn(λ)
n−1
n . (15)

Combining (14) and (15), we finally obtain

n(1 + v21)Sn(λ)
n−1
n + Sn(λ)

f1
f
v1 ≤ (2n− 1)Sn(λ).

Dividing by Sn(λ) on both sides of the above inequality and using (1), we obtain

n(1 + v21)((1 + v21)
n
2 f)−

1
n − |∇f |

f
v1 ≤ 2n− 1,

i.e.,(
nf− 1

n − |∇f |
f

)
· v1 ≤ 2n− 1. (16)

If nf− 1
n − |∇f |

f > 0, then we have v1 ≤ C(n, f, |∇f |) which is equivalent to |∇logu| ≤ C and therefore we complete
the proof of Theorem 1.1.

3. Conclusion

We have obtained Harnack inequality of Equation (1) by using logarithmic gradient estimate. Local C2 apriori
estimate can also be obtained and the C2,α bounds are standard by Evans-Krylov estimates. By virtue of continuity
method, we can prove that if f ∈ C∞(Sn) is a positive function, then there exists a C∞ solution to equation (1).
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