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Abstract

Power convexities of a class of Hessian equations are considered in this paper. It is proved that some power
functions of the smooth admissible solutions to the Hessian equations are strictly convex in the ball. For a
special case of the equation, a lower bound principal curvature and Gaussian curvature estimates are given.
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1. Introduction

Convexity of solutions to partial differential equations is an interesting issue and has been investigated for a long
time. One interesting question in the study of convexity is the following: Is there a monotone real function f , such
that f(u(x)) is concave or convex. We recall here some results concerning the power convexity. A typical example
is that in 1971, Makar-Limanov [1] considered the following elliptic boundary value problem{
4u = −1 in Ω,
u = 0 on ∂Ω.

in a bounded and convex planar domain. By an ingenious argument involving the maximum principle, he proved that
the square root u

1
2 of the solution u is strictly concave. Another well-known example is that in 1976, Brascamp-Lieb

[2] used a probabilistic approach to establish the log-concavity of the fundamental solution of diffusion equation with
convex potential in a bounded and convex domain in Rn. Consequently, they proved the log-concavity of the first
eigenfunction of the Laplacian operator in convex domain. Similar to linear equations, the same kind phenomena
appears for the fully nonlinear operators. One typical result is that Ma-Xu [3] considered the smooth admissible
solution u of the following Hessian equation{
σ2(D

2u) = 1 in Ω ⊂ R3,
u = 0 on ∂Ω,

where and in the following, D2u means the Hessian of u and σ2(D
2u) denotes the Hessian operator which is exactly

the second elementary symmetric function of the eigenvalues of D2u. Under the assumption Ω ⊂ R3 be a bounded
and strictly convex domain, they proved that the function v = −(−u)

1
2 is strictly convex and then gave an example

to illustrate the sharpness of the convexity index 1
2 . Another interesting result is that in 2010, Liu-Ma-Xu [4]
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considered the following eigenvalue problem for Hessian operator in a bounded and strictly convex domain{
σ2(D

2u) = λ(−u)2 in Ω ⊂ R3,
u = 0 on ∂Ω.

They obtained the strict logarithmic concavity of the eigenfunction. As an application, they get Brunn-Minkowski
inequality for the Hessian eigenvalue and characterize the equality case.

It leaves an open question whether the power convexity holds for the general Hessian operator σk and for the
domain being in general dimensions. We will answer this question when the domain is the ball BR(o) ⊂ Rn.

In this paper, we mainly consider the strict power convexity of the admissible solutions of the following Hessian
equations in the ball BR(o) ⊂ Rn:σk(D

2u) = λ(−u)p in BR(o) ⊂ Rn,
u < 0 on BR(o),
u = 0 on ∂BR(o),

(1)

where 1 ≤ k < n and 1 ≤ p ≤ k.
For this problem, it has been proved in [8] that for any p ∈ [0, 2)

⋃
(2,+∞) and λ > 0, there exists an admissible

solution u ∈ C∞(Ω)
⋂
C1,1(Ω̄). Furthermore if p ∈ [0, 2), then comparison theorem holds for the solution and

therefore the admissible solution to (1) is unique.
Our main results are stated as follows.

Theorem 1.1 Let BR(o) be the ball in Rn with radius R > 0 centering at o and 0 ≤ p < k. Let u ∈ C∞(BR)
⋂

C1,1(BR)

be the admissible solution of equation (1) in BR(o). Then the function v = −(−u)
k−p
2k is strictly convex in BR(o).

For the special case p = 0 of equation (1), we also confirm the strict power convexity by computing the principal
curvatures of the following problem.σk(D

2u) = λ in BR(o) ⊂ Rn,
u < 0 on BR(o),
u = 0 on ∂BR(o),

(2)

For this problem (2), we have the following theorem concerning the quantitative convexity estimates.

Theorem 1.2 Let u be the smooth admissible solution of problem (2). Then for the graph v = −(−u)
1
2 , we denote

κmin and KG denote the smallest principal curvature and the Gaussian curvatures of the graph v respectively. Then
(1) If λ ≤ 2kCk

n , we have the lower bound estimates for the principal curvatures κmin ≥ ( λ
2kCk

n
)

1
2kR−1 and lower

bound estimates for the Gaussian curvature KG ≥ ( λ
2kCk

n
)

n
2kR−n respectively.

(2) If λ > 2kCk
n, we have κmin ≥ (

2kCk
n

λ )
1
kR−1 and KG ≥ (

2kCk
n

λ )
n
k R−n respectively.

Hence the graph v is strictly convex.

The main step of the proof of Theorem 1.2 is to calculate the principal curvatures and the Gaussian curvatures of
the graph v.

We will use the definitions of elementary symmetric function and curvature formulas for the surfaces during
the proving process. These definitions and formulas are standard, the readers can consult them on other reference
books, such as [5], [6] and [7], etc..

The paper is organized as follows. In section 2, we use a contradiction argument to prove that the solutions to a
class of Hessian equations (1) in the ball is strictly power convex. In section 3, we calculate the principal curvatures

and the Gaussian curvature of the solution surface v = −(−u)
1
2 w.r.t. equation (2) and confirm the strict power

convexity of (2) in a quantitative viewpoint.

2. Proof of theorem 1.1

In this section, we use a contradiction argument to prove Theorem 1.1. We show that the smooth admissible
solution to a class of Hessian equations (1) in the ball BR(o) are all strictly power convex.

When the domain of the problem (1) is the ball BR(o) with radius R and center o, Chou-Wang [8] or Tso [9]
have proved that, if p ∈ (0, k), the equation (1) has a unique negative admissible solution u ∈ C∞(BR)

⋂
C1,1(BR)

which is radially symmetric.
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Therefore we may assume the solution has the form

u(x) = φ(|x|) = φ(r), for |x| = r,

where r ∈ [0, R] and we see that φ(r) < 0 for r ∈ [0, R]. Then φ is an increasing function in (0, R) and satisfies
φ′(0) = φ(R) = 0.

For 1 ≤ i, j ≤ n, a calculation shows that

∂r

∂xi
=

xi

r
,

∂2r

∂xi∂xj
= −r−3xixj + r−1δij .

Then it follows that

uij = (φ
′′
r−2 − φ

′
r−3)xixj + φ′r−1δij .

Using the fact that the determinant of the matrix {Axixj + Bδij}1≤i,j≤k is ABk−1|x|2 + Bk, we have the radial
form of the σk operator

σk(D
2u) = Ck−1

n−1φ
′k−1φ

′′
r−k+1 + Ck

n−1(φ
′)kr−k, (3)

where Ck
n−1 and Ck−1

n−1 are the combinatorial constants.

For v = −(−φ)
k−p
2k , we have φ = −(−v)

2k
k−p and

φ′ =
2k

k − p
(−v)

k+p
k−p v′,

φ
′′
=

2k

k − p
(−v)

k+p
k−p v

′′
− 2k

k − p

k + p

k − p
(−v)

2p
k−p v′2.

(4)

Substituting (4) into (3), the equation (1) can be rewritten as

r(−v)kv′k−1v
′′
− k + p

k − p
r(−v)k−1v′k+1 +

n− k

k
(−v)kv′k =

λ

Ck−1
n−1

(
k − p

2k
)krk, for 0 < r < R (5)

with conditions

v
′
(0) = 0 and v

′
(r) > 0 for 0 < r < R.

From the above, we know that

v
′′
(0) ≥ 0.

To get a qualitative value of v
′′
(0), we first obtain from the L’Hospital rule that

v
′′
(0) = lim

r→0+
v

′′
(r) = lim

r→0+

[v′
(r)

r

]
.

Dividing rk on the both sides of equation (5) and letting r → 0, we obtain

(−v(0))kv′′(0)k +
n− k

k
(−v(0))kv′′(0)k =

λ

Ck−1
n−1

(
k − p

2k
)k,

and we obtain

v′′(0) = k

√
kλ

nCk−1
n−1

k − p

2k
[−v(0)] = k

√
λ

Ck
n

k − p

2k
[−v(0)] > 0.

We use contradiction argument to show that v(r) is strictly convex for all r ∈ [0, R]. If not, there exists a
smallest positive r0 such that v

′′
(r0) = 0. We know v

′
(r) > 0 for 0 < r ≤ R and v

′′
(r) > 0 for 0 < r < r0 and

therefore

v
′′′
(r0) ≤ 0. (6)



Global Journal of Mathematical Analysis 137

On the other hand, we will prove in the following that v
′′′
(r0) > 0 and a contradiction follows.

To this aim, we differentiate the equation (5) with respect to r and evaluate at r = r0 to obtain

r0[−v(r0)]
kv′(r0)

k−1v′′′(r0)−
(
n− k +

k + p

k − p

)
[−v(r0)]

k−1v′(r0)
k+1

+ (k − 1)
k + p

k − p
r0[−v(r0)]

k−2v′(r0)
k+2 =

λ

Ck−1
n−1

(
k − p

2k
)kkrk−1

0 ,

i.e.,

r0[−v(r0)]
kv′(r0)

k−1v′′′(r0) =
λ

Ck−1
n−1

(
k − p

2k
)kkrk−1

0

+
(
n− k +

k + p

k − p

)
[−v(r0)]

k−1v′(r0)
k+1 − (k − 1)

k + p

k − p
r0[−v(r0)]

k−2v′(r0)
k+2,

(7)

where we have used the assumption v′′(r0) = 0.
To prove that the sign of v

′′′
(r0) is positive, we still need to estimate the sign of the right hand side of (7).

By taking r = r0 in equation (5) and noting v′′(r0) = 0, we have

n− k

k
[−v(r0)]

kv′(r0)
k − k + p

k − p
r0[−v(r0)]

k−1v′(r0)
k+1 =

λ

Ck−1
n−1

(
k − p

2k
)krk0 . (8)

We can rewrite the above equation (8) into

[−v(r0)]
k−1v′(r0)

k+1 =
kλ

(n− k)Ck−1
n−1

(
k − p

2k
)krk0

v′(r0)

[−v(r0)]
+

k(k + p)

(n− k)(k − p)
r0[−v(r0)]

k−2v′(r0)
k+2. (9)

Substituting (9) into (7), we obtain that

r0[−v(r0)]
kv′(r0)

k−1v′′′(r0) =
(
n− k +

k + p

k − p

) kλ

(n− k)Ck−1
n−1

(
k − p

2k
)krk0

v′(r0)

[−v(r0)]

+
λ

Ck−1
n−1

(
k − p

2k
)kkrk−1

0 + (1 +
k(k + p)

(n− k)(k − p)
)
k + p

k − p
r0[−v(r0)]

k−2v′(r0)
k+2 > 0.

(10)

Noting that 0 ≤ p < k, −v(r0) > 0 and v′(r0) > 0 by our assumption, therefore from (10), we know that v′′′(r0) > 0,

which is a contradiction with (6). The contradiction tell us that v
′′
(r) > 0 in [0, R) and hence v = −(−u)

k−p
2k is

strictly convex in the ball BR(o).

3. Proof of theorem 1.2

In this section, we confirm the strict power convexity in Theorem 1.2 in a quantitative viewpoint.

For equation (2), by solving the corresponding ordinary differential equation, we derive that u = k

√
λ
Ck

n

(|x|2−R2)
2

is the unique admissible solution. It is easy to see that v = −
√
−u = −

√
k

√
λ
Ck

n

(R2−|x|2)
2 is strictly convex. In the

following, we will give quantitative convexity estimates of the solution by computing the principal curvatures of the

solution surface. For convenience of the calculation, we assume v = A
√
R2 − |x|2, where we denote A = 2k

√
λ

2kCk
n
.

To calculate the principal curvatures, we take the first and second derivatives of v to get

vi =
Axi√

R2 − |x|2
,

vij =
A√

R2 − |x|2
(δij +

xixj

R2 − |x|2
).

Since the position vector of the graph v can be written as X = (x, v(x)), x ∈ Rn. Then the tangent vector and the
unit normal vector of the graph are given by

Xi = (0, · · ·, 0, 1, 0, · · ·, 0, Axi√
R2 − |x|2

), the i−th component being 1, for 1 ≤ i ≤ n
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and

−→n = (− Ax1√
R2 + (A2 − 1)|x|2

, · · ·,− Axn√
R2 + (A2 − 1)|x|2

,

√
R2 − |x|2

R2 + (A2 − 1)|x|2
)

respectively.
Therefore the induced metric and the second fundamental form of the graph are given by

gij =< Xi, Xj >= δij +
A2

R2 − |x|2

and

hij =< Xij ,
−→n >=

A√
R2 + (A2 − 1)|x|2

(δij +
xixj

R2 − |x|2
)

respectively.

We denote the inverse matrix of {gij} by {gij}. By direct computation, we know that gij = δij − A2xixj

R2+(A2−1)|x|2
and hence the shape operator of the graph v is

hi
j =

n∑
k=1

gikhkj = δij −
(A2 − 1)xixj

R2 + (A2 − 1)|x|2
.

By calculation, we obatain that the principal curvatures of the graph v which are the eigenvalues of the shape

operator are A√
R2+(A2−1)|x|2 with n-1 multiplicities and AR2

(R2+(A2−1)|x|2)
3
2
. We see from the positiveness of the

principal curvatures that the graph v is strictly convex.
We further compute the Gaussian curvature of the graph v by multiplying all the principal curvatures and obtain

KG = AnR2
[
R2 + (A2 − 1)|x|2

]−n+2
2 = (

λ

2kCk
n

)
n
2kR2

{
R2 +

[
(

λ

2kCk
n

)
1
k − 1

]
|x|2

}−n+2
2 .

Therefore, if λ ≤ 2kCk
n, then we have lower bound estimates for the smallest principal curvature κmin and the

Gaussian curvature KG, i.e.,

κmin =
A√

R2 + (A2 − 1)|x|2
≥ AR−1 ≥ (

λ

2kCk
n

)
1
2kR−1

and

KG ≥ (
λ

2kCk
n

)
n
2kR−n.

respectively.
On the other hand, if λ > 2kCk

n, then the smallest principal curvature and the Gaussian curvature attains their
minimums on the boundary of the domain, which are

κmin =
AR2

(R2 + (A2 − 1)|x|2) 3
2

≥ 1

A2R
= (

2kCk
n

λ
)

1
kR−1

and

KG ≥ (
2kCk

n

λ
)

n
k R−n

respectively. Therefore we have completed the proof of Theorem 1.2.

4. Conclusion

In this paper, we consider power convexity of a Hessian equation in the n-dimensional ball and obtain lower bound
estimates for the principal curvatures and the Gaussian curvature. However, people are interesting in the upper
and lower bound curvature estimates for the solutions of fully-nonlinear partial differential equations. For the
corresponding results of general convex domains, we meet some technical difficulties. In our further studies, we
will focus on the study of convexity and curvature estimates for general Hessian equations and general convex
domain. These kind of convexities and convexity estimates are of great interest in the study of fully-nonlinear
elliptic equations. Finding their various applications of the convexities will help us understanding of the geometry
of the solution surfaces.
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