

Global Journal of Mathematical Analysis

Website: www.sciencepubco.com/index.php/GJMA doi: 10.14419/gjma.v4i1.5534 **Research paper**

A simple proof of the closed graph theorem

Alexander G. Ramm^{1*}

¹Mathematics Department, Kansas State University Manhattan, KS 66506, USA ^{*}Corresponding author E-mail: ramm@math.ksu.edu

Abstract

Assume that A is a closed linear operator defined on all of a Hilbert space H. Then A is bounded. A new short proof of this classical theorem is given on the basis of the uniform boundedness principle. The proof can be easily extended to Banach spaces.

Keywords: closed graph theorem; closed linear operator; uniform boundedness principle; new short proof of the closed graph theorem.

1. Introduction

We denote by D(A) the domain of definition of A, by A^* the adjoint operator, by ||A|| the norm of A, by (u, v) the inner product in H, by c > 0 various estimation constants are denoted. Let A be a linear operator in H and $u_n \in D(A)$. Suppose that $u_n \to u$ and $Au_n \to v$. If the above implies that $u \in D(A)$ and Au = v then the operator Ais called closed (see [5]). It is well known (see, [1], [5]) that any bounded sequence in H contains a convergent subsequence. The following result is classical:

Theorem 1. Let A be a closed linear operator in a Hilbert space H, and D(A) = H. Then A is bounded.

Theorem 1 is known as the closed graph theorem. Its proof can be found in [1], [5], [7], and in many other texts in functional analysis. These proofs are based on the Baire cathegory theorem. The aim of this note is to give a simple new proof of Theorem 1 using the well-known uniform boundedness principle, which we state as Theorem 2, and a new result, stated as Theorem 3, which is proved in Section 2.

In [2] a proof of Theorem 1 is given, which is different from ours. Our proof of Theorem 1 is not only new but also very short.

Proofs of Theorem 2 which are not based on Baire's theorem can be found in [2], problem 27, [3], [4], [6].

Theorem 2. If $\sup_n |(Au_n, v)| \le \infty$ for every $v \in H$, then $\sup_n ||Au_n|| \le \infty$

We assume Theorem 2 known.

The new result we use in the proof of Theorem 1 is the following: **Theorem 3.** If A is a linear closed operator with D(A) = H, then $D(A^*) = H$.

In Section 2 proofs are given.

2. Proofs

Proof of Theorem 3.

If *A* is a linear closed operator and D(A) = H, then A^* exists, is closed and densely defined. To prove that $D(A^*) = H$, let $v \in H$ be arbitrary, and $v_n \rightarrow v$, $v_n \in D(A^*)$. Let $u \in H$ be arbitrary. Then

$$(Au, v_n) = (u, A^*v_n)$$
 and

$$\sup_{n} |(u, A^* v_n)| \le \sup_{n} ||v_n|| ||Au|| \le c(u).$$
(1)

By Theorem 2 one has $\sup_n ||A^*v_n|| \le c$. Therefore, a subsequence, denoted again A^*v_n , converges weakly in H: $A^*v_n \rightarrow v^*$, and $(Au, v) = (u, v^*)$. Thus, $v \in D(A^*)$, and $D(A^*) = H$ since $v \in H$ was arbitrary. Theorem 3 is proved.

Proof of Theorem 1. Consider the relation $(Au, v) = (u, v^*)$. Since D(A) = H and A is closed, Theorem 3 says that $D(A^*) = H$, the above relation holds for every $v \in H$, and $v^* = A^*v$. Suppose that A is unbounded. Then there exists a sequence u_n , $||u_n|| = 1$, such that

$$||Au_n|| \to \infty. \tag{2}$$

On the other hand, one has:

$$\sup_{n} |(Au_{n}, v)| = \sup_{n} |(u_{n}, A^{*}v)| \le \sup_{n} ||u_{n}|| \cdot ||A^{*}v|| = ||A^{*}v|| := c(v).$$
(3)

By Theorem 2 one concludes that $\sup_n ||Au_n|| < c$. This contradicts (2). Thus, one concludes that ||A|| < c. Theorem 1 is proved. \Box

References

- N.Dunford, J. Schwartz, Linear operators, Part I, Interscience, New York, 1958.
- [2] P. Halmos, A Hilbert space problem book, Springer-Verlag, New York, 1974. (problems 52 and 58)
- [3] J. Hennefeld, A non-topological proof of the uniform boundedness theorem, Amer. Math. Monthly, 87, (1980), 217.
- [4] S. Holland, A Hilbert space proof of the Banach-Steinhaus theorem, Amer. Math. Monthly, 76, (1969), 40-41.
- [5] T. Kato, Perturbation theory for linear operators, Springer-Verlag, New York, 1984.
- [6] A. Sokal, A relally simple elementary proof of the uniform boundedness theorem, Amer. Math. Monthly, 118, (2011), 450-452.
- [7] K. Yosida, Functional analysis, Springer, New York, 1980.

Copyright © 2016 Alexander G. Ramm. This is an open access article distributed under the <u>Creative Commons Attribution License</u>, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.