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Abstract

Assume that A is a closed linear operator defined on all of a Hilbert space H. Then A is bounded. A new short proof of this classical theorem
is given on the basis of the uniform boundedness principle. The proof can be easily extended to Banach spaces.
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1. Introduction

We denote by D(A) the domain of definition of A, by A∗ the adjoint
operator, by ||A|| the norm of A, by (u,v) the inner product in H, by
c > 0 various estimation constants are denoted. Let A be a linear
operator in H and un ∈ D(A). Suppose that un → u and Aun → v.
If the above implies that u ∈ D(A) and Au = v then the operator A
is called closed (see [5]). It is well known (see, [1], [5]) that any
bounded sequence in H contains a convergent subsequence.
The following result is classical:
Theorem 1. Let A be a closed linear operator in a Hilbert space H,
and D(A) = H. Then A is bounded.
Theorem 1 is known as the closed graph theorem. Its proof can be
found in [1], [5], [7], and in many other texts in functional analysis.
These proofs are based on the Baire cathegory theorem. The aim of
this note is to give a simple new proof of Theorem 1 using the well-
known uniform boundedness principle, which we state as Theorem
2, and a new result, stated as Theorem 3, which is proved in Section
2.
In [2] a proof of Theorem 1 is given, which is different from ours.
Our proof of Theorem 1 is not only new but also very short.
Proofs of Theorem 2 which are not based on Baire’s theorem can be
found in [2], problem 27, [3], [4], [6].
Theorem 2. If supn |(Aun,v)| ≤ ∞ for every v ∈ H, then
supn ||Aun|| ≤ ∞

We assume Theorem 2 known.
The new result we use in the proof of Theorem 1 is the following:
Theorem 3. If A is a linear closed operator with D(A) = H, then
D(A∗) = H.
In Section 2 proofs are given.

2. Proofs

Proof of Theorem 3.
If A is a linear closed operator and D(A) = H, then A∗ exists, is
closed and densely defined. To prove that D(A∗) = H, let v ∈ H be
arbitrary, and vn → v, vn ∈ D(A∗). Let u ∈ H be arbitrary. Then

(Au,vn) = (u,A∗vn) and

sup
n
|(u,A∗vn)| ≤ sup

n
||vn||||Au|| ≤ c(u). (1)

By Theorem 2 one has supn ||A∗vn|| ≤ c. Therefore, a subsequence,
denoted again A∗vn, converges weakly in H: A∗vn ⇀ v∗, and
(Au,v) = (u,v∗). Thus, v ∈ D(A∗), and D(A∗) = H since v ∈ H
was arbitrary.
Theorem 3 is proved. �

Proof of Theorem 1. Consider the relation (Au,v) = (u,v∗). Since
D(A) = H and A is closed, Theorem 3 says that D(A∗) = H, the
above relation holds for every v ∈ H, and v∗ = A∗v. Suppose that A
is unbounded. Then there exists a sequence un, ||un||= 1, such that

||Aun|| → ∞. (2)

On the other hand, one has:

sup
n
|(Aun,v)|= sup

n
|(un,A∗v)| ≤ sup

n
||un|| · ||A∗v||= ||A∗v|| := c(v).

(3)

By Theorem 2 one concludes that supn ||Aun||< c. This contradicts
(2). Thus, one concludes that ||A||< c. Theorem 1 is proved. �
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