

Global Journal of Mathematical Analysis

Website: www.sciencepubco.com/index.php/GJMA doi: 10.14419/gjma.v4i1.5733 **Research paper**

Common fixed point theorems for weakly compatible non-self mappings in metric spaces of hyperbolic type

Kanayo Stella Eke¹

¹Department of Mathematics, Covenant University, KM. 10, Idiroko Road, P. M. B. 1023, Ota , Ogun State, Nigeria ^{*}Corresponding author E-mail:kanayo.eke@covenantuniversity.edu.ng

Abstract

In this paper, we establish common fixed point theorems for a pair of weakly compatible nonself mappings satisfying generalized contractive conditions in metric space of hyperbolic type. The results generalize and extend some results in literature.

Keywords: common fixed points, generalized contractive mapping, metric space of hyperbolic type, nonself mappings, weakly compatble mappings.

1. Introduction

In literature, fixed point theory has diverse results on fixed point theorems for self-mappings in metric and Banach spaces. However, an area that seems not broadly investigated is the fixed point theorems for non-self mappings. Kirk [1] extended the metric space to metric space of hyperbolic type by replacing Krasnoselskii's result with the framework of convex metric space. The study of fixed point theorems for multivalued non-self mappings in a metric space (X,d) was initiated by Assad [2] and Assad and Kirk [3]. Many authors have studied the existence and uniqueness of fixed and common fixed points result for nonself contraction mappings in cone metric spaces [see; 4, 5, 6, 7]. Some authors studied common fixed point theorems for non-self mappings in metric spaces of hyperbolic type [See: 8, 9]. Motivated by Jankovic et al. [7], we prove some common fixed point theorems for a pair of weakly compatible non-self mappings satisfying a generalized contraction condition in the setting of metric space of hyperbolic type.

Throughout our consideration, we suppose that (X,d) is a metric space which contains a family L of metric segments (isometric images of real line segment) such that

a) each two points $x, y \in X$ are endpoints of exactly one number seg[x, y] of L, and

b) If $u, x, y \in X$ and if $z \in seg[x, y]$ satisfies $d(x, z) = \lambda d(x, y)$ for $\lambda \in [0, 1]$ then

$$d(u,z) \le (1-\lambda)d(u,x) + \lambda d(u,y) \tag{1.1}$$

A space of this type is called metric space of hyperbolic type.

The following definition was introduced by Jungck et al. [4] in the setting of cone metric spaces.

Definition 1.1 Let (X,d) be a complete cone metric space, let C be a non empty closed subset of X, and let $f,g: C \to X$ be non-self mappings. Denote for $x, y \in C$

$$M_1^{f,g} = \{ d(gx,gy), d(fx,gx), d(fy,gy), \frac{d(fx,gy) + d(fy,gx)}{2} \}$$
(1.2)

Then *f* is called a generalized g_{M_1} -contractive mapping in *C* into *X* if, for some $\lambda \in (0, \sqrt{2} - 1)$, there exists $U(x, y) \in M_1^{f,g}$ such that for all $x, y \in C$, $d(fx, fy) \leq \lambda U(x, y)$

2. Main results

Jankovic et al. [7] proved the following fixed point theorem for a pair of non-self mappings defined on a nonempty closed subset of complete metrically convex cone metric spaces with new contractive conditions.

Theorem 2.1: Let (X,d) be a complete cone metric space, let *K* be a non empty closed subset of *X* such that for each $x \in C$ and $y \notin C$ there exists a point $z \in \delta K$ (the boundary of *K*) such that d(x,z) + d(z,y) = d(x,y).

Suppose that $f,g: C \to X$ are such that f is a generalized g_{M_1} contractive mapping of C into X and

(i)
$$\delta C \subseteq gC, fC \cap C \subseteq gC$$

(ii) $gx \in \delta C \Longrightarrow fx \in C$, (iii) gC is closed in X.

Then the pair (f,g) has a coincidence point. Moreover, if (f, g) are coincidentally commuting, then f and g have a unique common fixed point.

In this paper, we extend the above theorem to fixed point theorem of weakly compatible non- self mappings in metric space of hyperbolic type.

We state and prove our main result as follows.

Copyright © 2016 Author. This is an open access article distributed under the <u>Creative Commons Attribution License</u>, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Theorem 2.2: Let X be a metric space of hyperbolic type, K a non-empty closed subset of X and δK the boundary of K. Let δK be nonempty and let $T: K \to X$ and $f: K \cap T(K) \to X$ be two non-selfmappings satisfying the following conditions:

$$d(fx, fy) \le \lambda . \mu$$

where
$$\mu \in \{d(Tx, Ty), d(Tx, fx), d(Ty, fy), \frac{d(Tx, fy) + d(Ty, fx)}{2}\})$$
(2.1)

for all $x, y \in C$, $0 < \lambda < 1$. If (i) $\delta K \subset TK$, $fK \cap K \subset TK$, (ii) $Tx \in \delta K \Longrightarrow fx \in K$, (iii) $fK \cap K$ is complete.

Then f and T have a coincidence point z in X. Moreover, if f and Tare weakly compatible, then z is the unique common fixed point of f and T.

Proof: Let $x \in \delta K$ be arbitrary. We construct three sequences, $\{x_n\}$ and $\{z_n\}$ in K and a sequence $\{y_n\}$ in $fK \subset X$ as follows. Choose $z_0 = x$. Since $z_0 \in \delta K$ then there exists $x_0 \in K$ such that $z_0 = Tx_0 \in \delta K$. By (iii) $fx_0 \in K$. Now choose $y_1 = fx_0$ with $y_1 \in fK \subset X$. This implies that $fx_0 \in fK \cap K \subset TK$. Set $y_1 = fx_0$, we choose $x_1 \in K$ such that $Tx_1 = fx_0$. Hence $z_1 = Tx_1 = fx_0 = y_1$. This gives $y_2 = fx_1$.

Since $y_2 \in fK \cap K$ then $y_2 \in TK$ by (ii). Let $x_1 \in K$ with $z_1 = Tx_1 \in \delta K$ such that $z_2 = Tx_2 = fx_1 = y_2$. If $fx_1 = y_2 \notin K$, then there exists $z_2 \in \delta K(z_2 \notin y_2)$ such that $z_2 \in seg[y_1, y_2]$. Since $x_2 \in K$, then by (i) we have $Tx_2 = z_2$. Hence $z_2 \in \delta K \cap seg[y_1, y_2].$

We can choose $y_3 \in fK \cap K$, and by (ii), $y_3 \in TK$ and let $x_2 \in K$ such that $Tx_3 = y_3 = fx_2$. Continuing in the process, we construct three sequence $\{x_n\} \subseteq K$, $\{z_n\} \subseteq K$ and $\{y_n\} \subseteq fK \subset X$ such that $(\mathbf{a})y_n = fx_{n-1}$

(b) $z_n = T x_n$,

(c) $z_n = y_n$ if and only if $y_n \in K$

(d) $z_n \notin y_n$ whenever $y_n \notin K$ and $z_n \in \delta K$ such that

 $z_n \in \delta K \cap seg[fx_{n-2}, fx_{n-1}].$

This proves that f and T are non-self mappings.

Remark 2.3: By (d) if $z_n \neq y_n$, then $z_n \in \delta K$ and combining (b), (ii) and (a) we have $z_{n+1} = y_{n+1}$. Likewise $z_{n-1} = y_{n-1} \in K$. If $z_{n-1} \in \delta K$, then it implies $z_n = y_n \in K$.

Next, we show that $x_n \neq x_{n+1}$ for all n. From (a), (b), (c) and (d) we can establish three possibilities.

(1) $z_n = y_n \in K$ and $z_{n+1} = y_{n+1}$; (2) $z_n = y_n \in K$ but $z_{n+1} \neq y_{n+1}$;

(3) $z_n \neq y_n \in K$ in which case $z_n \in \delta K \cap seg[fx_{n-2}, fx_{n-1}]$. Now

Case (1)

Let $z_n = y_n \in K$ and $z_{n+1} = y_{n+1}$. Using (2.1) we obtain $d(z_n, z_{n+1}) = d(y_n, y_{n+1}) = d(fx_{n-1}, fx_n) \le \lambda . \mu_n$

where
$$\mu_n \in \{d(Tx_{n-1}, Tx_n), d(Tx_{n-1}, fx_{n-1}), d(Tx_n, fx_n), \frac{d(Tx_{n-1}, fx_n) + d(Tx_n, fx_{n-1})}{2}\})$$

$$= \{d(z_{n-1}, z_n), d(z_{n-1}, y_n), d(z_n, y_{n+1}), \frac{d(z_{n-1}, y_{n+1}) + d(z_n, y_n)}{2}\}$$

$$= \{d(z_{n-1}, z_n), d(z_{n-1}, z_n), d(z_n, z_{n+1}), \frac{d(z_{n-1}, z_{n+1}) + d(z_n, z_{n+1})}{2}\}$$

$$= \{d(z_{n-1}, z_n), d(z_{n-1}, z_n), d(z_n, z_{n+1}), \frac{d(z_{n-1}, z_n) + d(z_n, z_{n+1})}{2}\}$$

.

) 1/77

Obviously, there are infinite many n such that at least one of the following cases holds:

I: $d(z_n, z_{n+1}) \leq \lambda d(z_{n-1}, z_n)$

II: $d(z_n, z_{n+1}) \leq \lambda . d(z_{n-1}, z_n)$

III: $d(z_n, z_{n+1}) \leq \lambda . d(z_n, z_{n+1})$. A contradiction.

$$\begin{aligned} \text{IV:} \ &d(z_n, z_{n+1}) \leq \lambda . \frac{d(z_{n-1}, z_n) + d(z_n, z_{n+1})}{2} \\ &\leq \frac{\lambda}{2} (d(z_{n-1}, z_n) + \frac{\lambda}{2} d(z_n, z_{n+1})) \text{ implies} \\ &d(z_n, z_{n+1}) \leq \lambda d(z_{n-1}, z_n) \end{aligned}$$

From I, II, III, IV it follows that $d(z_n, z_{n+1}) \leq \lambda . d(z_{n-1}, z_n)$

Case 2

Let $z_n = y_n \in K$ but $z_{n+1} \neq y_{n+1}$. Then $z_{n+1} \in \delta K \cap seg[y_n, y_{n+1}]$. From (1.1) with u = y, we obtain $d(y,z) \le (1-\lambda)d(x,y)$

Therefore

 $d(x,y) \le d(x,z) + d(z,y) \le \lambda d(x,y) + (1-\lambda)d(x,y) = d(x,y)$ Hence $z \in seg[x, y] \Longrightarrow d(x, z) + d(z, y) = d(x, y)$. Since $z_{n+1} \in seg[y_n, y_{n+1}] = seg[z_n, y_{n+1}]$, we have

$$d(z_n, z_{n+1}) = d(y_n, z_{n+1}) = d(y_n, y_{n+1}) - d(z_{n+1}, y_{n+1}) < d(y_n, y_{n+1})$$

In view of case (1), we obtain $d(y_n, y_{n+1}) \leq \lambda . d(z_{n-1}, z_n).$

This implies that $d(z_n, z_{n+1}) \leq \lambda . d(z_{n-1}, z_n)$.

Case (3) Then $z_n \in \delta K \cap seg[fx_{n-2}, fx_{n-1}]$. i.e. $z_n \neq y_n$. $z_n \in$ $\delta K \cap seg[y_{n-1}, y_n]$ By remark (2.3) we have $z_{n+1} = y_{n+1}$ and $z_{n-1} = y_{n-1}$. This implies that $d(z_n, z_{n+1}) = d(z_n, y_{n+1})$

$$\leq d(z_n, y_n) + d(y_n, y_{n+1})$$

= $d(z_{n-1}, y_n) - d(z_n, z_{n-1}) + d(y_n, y_{n+1})$
= $d(y_{n-1}, y_n) - d(z_n, z_{n-1}) + d(y_n, y_{n+1})$ (2.3)

We shall find $d(y_{n-1}, y_n)$ and $d(y_n, y_{n+1})$. Since $z_{n-1} = y_{n-1}$ then we can conclude that

 $d(y_{n-1}, y_n) \leq \lambda . d(z_{n-2}, z_{n-1}),$ (2.4)with respect to case (2). Now $d(y_n, y_{n+1}) = d(fx_{n-1}, fx_n) \leq \lambda . \mu_n$

where $\mu_n \in \{d(Tx_{n-1}, Tx_n), d(Tx_{n-1}, fx_{n-1}), d(Tx_n, fx_n), d(Tx_n, f$

$$\begin{aligned} &\frac{d(Tx_{n-1},fx_n)+d(Tx_n,fx_{n-1})}{2}\})\\ &= \{d(z_{n-1},z_n),d(z_{n-1},y_n),d(z_n,y_{n+1}),\frac{d(z_{n-1},y_{n+1})+d(z_n,y_n)}{2}\}\\ &= \{d(z_{n-1},z_n),d(z_{n-1},y_n),d(z_n,z_{n+1}),\frac{d(z_{n-1},z_{n+1})+d(z_n,y_n)}{2}\}\\ &\leq \{d(z_{n-1},z_n),d(z_{n-1},y_n),d(z_n,z_{n+1}),\frac{d(z_{n-1},z_n)+d(z_n,z_{n+1})+d(z_n,z_{n+1})}{2}\}\\ &\leq \{d(z_{n-1},z_n),d(y_{n-1},y_n),d(z_n,z_{n+1}),\frac{2d(z_{n-1},z_n)+d(z_n,z_{n+1})}{2}\}\end{aligned}$$

Clearly, there are infinite many n such that at least one of the following cases holds:

(2.2)

I: $d(y_n, y_{n+1}) \leq \lambda . d(z_{n-1}, z_n)$

II:
$$d(y_n, y_{n+1}) \leq \lambda d(y_{n-1}, y_n) \leq \lambda^2 d(z_{n-2}, z_{n-1})$$

III: $d(y_n, y_{n+1}) \leq \lambda . d(z_n, z_{n+1})$

IV: $d(y_n, y_{n+1}) \le \lambda . d(z_n, z_{n-1}) + \frac{\lambda}{2} d(z_n, z_{n+1})$ Substituting I, II, III, IV in (2.4) yields $d(z_n, z_{n+1}) \leq \lambda . d(z_{n-2}, z_{n-1}) - d(z_n, z_{n-1}) + \lambda . \mu_n$

from which we have four cases: V: $d(z_n, z_{n+1}) \le \lambda . d(z_{n-2}, z_{n-1}) - d(z_n, z_{n-1}) + \lambda . d(z_{n-1}, z_n)$

$$\leq \lambda . d(z_{n-2}, z_{n-1}) - (1 - \lambda) d(z_n, z_{n-1})$$
$$\leq \lambda . d(z_{n-2}, z_{n-1})$$

VI: $d(z_n, z_{n+1}) \leq \lambda . d(z_{n-2}, z_{n-1}) - d(z_n, z_{n-1}) + \lambda^2 . d(z_{n-2}, z_{n-1})$

$$\leq (\lambda + \lambda^2) d(z_{n-2}, z_{n-1}) - d(z_n, z_{n-1})$$
$$\leq (\lambda + \lambda^2) d(z_{n-2}, z_{n-1})$$

VII: $d(z_n, z_{n+1}) \le \lambda . d(z_{n-2}, z_{n-1}) - d(z_n, z_{n-1}) + \lambda . d(z_n, z_{n+1})$

$$\leq \frac{\lambda}{1-\lambda}d(z_{n-2},z_{n-1})-\frac{1}{1-\lambda}d(z_n,z_{n-1})$$

 $\leq \frac{\lambda}{1-\lambda} d(z_{n-2}, z_{n-1})$ VIII: $d(z_n, z_{n+1}) \leq \lambda . d(z_{n-2}, z_{n-1}) - d(z_n, z_{n-1}) + \lambda . d(z_n, z_n) + \lambda . d(z_n, z_n) + \lambda . d(z_n, z_n) + \lambda . d(z_n, z_n)$ $\frac{\lambda}{2}d(z_n, z_{n+1})$

$$\leq \lambda . d(z_{n-2}, z_{n-1}) - (1-\lambda) d(z_n, z_{n-1}) + \frac{\lambda}{2} d(z_n, z_{n+1})$$

$$\leq \frac{2\lambda}{2-\lambda} . d(z_{n-2}, z_{n-1}) - \frac{2(1-\lambda)}{2-\lambda} d(z_n, z_{n-1})$$

$$\leq \frac{2\lambda}{2-\lambda} . d(z_{n-2}, z_{n-1})$$

From V, VI, VII, VIII we obtain $d(z_n, z_{n+1}) \le k.d(z_{n-2}, z_{n-1})$ where

 $k = max\{\lambda, \lambda + \lambda^2, \frac{\lambda}{1-\lambda}, \frac{2\lambda}{2-\lambda}\}$

Combining Cases 1, 2, 3 we get $d(z_n, z_{n+1}) \leq k \cdot \omega_n$

where $\omega_n \in \{d(z_{n-2}, z_{n-1}), d(z_{n-1}, z_n)\}$ and

 $k = max\{\lambda, \lambda + \lambda^2, \frac{\lambda}{1-\lambda}, \frac{2\lambda}{2-\lambda}\}$

Following the procedure of Assad and Kirk [3], it can be easily verify by induction that for n > 1.5)

$$d(z_n, z_{n+1}) \le k^{\frac{n-1}{2}} \cdot \omega_2 \tag{2}$$

where $\omega_2 \in \{d(z_0, z_1), d(z_1, z_2)\}.$

For n > m and using (2.5) and the triangle inequality we have ``

$$d(z_n, z_m) \le d(z_n, z_{n-1}) + d(z_{n-1}, z_{n-2}) + \dots + d(z_{m+1}, z_m)$$

$$\le (k^{\frac{n-1}{2}} + k^{\frac{n-2}{2}} + \dots + k^{\frac{m-1}{2}}) . \omega_2$$

$$\le \frac{\sqrt{k}^{m-1}}{1 - \sqrt{k}} . \omega_2 \to 0, \quad \text{as } m \to \infty.$$

The sequence is Cauchy. Since $z_n = fx_{n-1} \in fK \cap K$ is complete, there is some $z \in fK \cap K$ such that $z_n \to z$. Let w in K be such that Tw = z. By the construction of $\{z_n\}$, there is a

subsequence $\{z_{n_k}\}$ such that $z_{n_k} = y_{n_k} = fx_{n_{k-1}}$ and $fx_{n_{k-1}} \to z$ We show that fw = z. $d(fw,z) \le d(fw,fx_{n_{k-1}}) + d(fx_{n_{k-1}},z) \le \lambda \cdot \mu_{n_k} + d(fx_{n_{k-1}},z)$ where $\mu_{n_k} \in \{(d(Tw, Tx_{n_{k-1}}), d(Tx_{n_{k-1}}, fx_{n_{k-1}}), d(Tw, fw),$ $\frac{d(Tw, fx_{n_{k-1}}) + d(Tx_{n_{k-1}}, fw)}{2} \}$

Taking $z_{n_k} = y_{n_k} = f x_{n_{k-1}} \to z$ as $n \to \infty$ yields $\mu_n \in \{0, d(z, fw), 0, \frac{d(z, fw)}{2}\}$

$$\mu_n \in \{d(z, fw), \frac{d(z, fw)}{2}\}$$

Thus, we have i) $d(fw,z) \le \lambda d(z,fw) + d(fx_{n_{k-1}},z) \le \lambda d(z,fw)$

Since $\lambda < 1$ then d(fw, z) = 0. This implies z = fw

ii) $d(fw,z) \leq \frac{\lambda}{2}d(fw,z)$

Since $\lambda < 1$ then d(fw, z) = 0. Hence z = fw. In all cases we have z = fw.

Suppose that T and f are weakly compatible, then we have $z = fw = Tw \Longrightarrow fz = fTw = Tfw = Tz.$ Next we prove that z = fz = Tz. Suppose $z \neq fz$ then using 2.1 we

obtain $d(fz,z) = d(fz,fw) < \lambda . \mu$

where

$$\mu \in \{ d(Tz,Tw), d(Tz,fz), d(Tw,fw), \\ \frac{d(Tz,fw)+d(Tw,fz)}{2} \} \\ \leq \{ d(z,z), d(z,fz), d(z,z), \frac{d(z,z)+d(z,fz)}{2} \}$$

$$\leq \{d(z, fz), \frac{d(z, fz)}{2}\}$$

Case (i) $d(fz,z) \leq \lambda d(fz,z)$ It is a contradiction. Hence z = fzCase(ii) $d(fz,z) \leq \frac{\lambda}{2}d(fz,z)$

It is also a contradiction. This imples that z = fz. Therefore we obtain z = fz = Tz. Thus T and f have a common fixed point. The uniqueness of the common fixed point follows easily from (2, 1).

Remark 2.4 : Theorem 2.2 is an extension of the result of jankovic [7].

Setting $T = I_x$, the identity mapping of X in Theorem 2.2, we obtain the following result.

Corollary 2.5: Let (X,d) be metric space of hyperbolic type, *K* a non-empty closed subset of *X* and δK the boundary of *K*. Let δK be nonempty such that $f: K \to K$ satisfies the condition $d(fx, fy) \leq \lambda . \mu$ where 1(()) 1(()

$$\mu \in \{ d(x,y), d(x,fx), d(y,fy), \frac{d(x,fy) + d(y,fx)}{2} \}$$
(2.6)

for all $x, y \in k$, $0 < \lambda < 1$ and f has the additional property that for each $x \in \delta K$ and $fx \in K$. Then *f* has a unique fixed point.

Corollary 2.6: Let X be a metric space of hyperbolic type, *K* a non-empty closed subset of *X* and δK the boundary of *K*. Let δK be nonempty and let $T: K \to X$ and $f: K \cap T(K) \to X$ be two non-self- mappings satisfying the following conditions: $d(fx, fy) < \lambda (d(Tx, fx) + d(Ty, fy))$ (2.7)

$$a(fx,fy) \le \kappa(a(fx,fx) + a(fy,fy))$$
(2)

for all
$$x, y \in C$$
, $0 < \lambda < \frac{1}{2}$. If

(i) $\delta K \subset TK$, $fK \cap K \subset TK$, (ii) $Tx \in \delta K \Longrightarrow fx \in K$,

(iii) $fK \cap K$ is complete.

Then f and T have a coincidence point z in X. Moreover, if f and Tare weakly compatible, then z is the unique common fixed point of f and T.

Example 2.7 : Let X be the set of real numbers with the usual metric, $K = [0, +\infty)$ and let $T : K \to X$ and $f : K \cap T(K) \to X$ be two non-self mappings defined by Tx = 4x and $fx = \frac{4x}{1+4x}$ for all $x \in K$.

Taking $x = \frac{1}{2}$ and $y = \frac{1}{4}$ we obtain $\lambda = \frac{1}{6}$. Thus *T* and *f* satisfied (2. 1) and all the hypotheses in Theorem 2.2 are satisfied. T and fhave a unique common fixed point z = 0.

3. Conclusion

In this section, we proved that in a metric space of hyperbolic type, two non-self mappings f and T satisfying certain contractive conditions have a coincidence point. Moreover, if the maps are weakly compatible then f and T have a unique common fixed point. We gave an example to validate our results.

References

- W. A. Kirk, Krasnoselskii's iteration process in hyperbolic space, Nu-mer. Funct. Anal. and Optimiz., 4(1982), 371-381.
- [2] N. A. Assad, On a fixed point theorem in Banach space, Tamkang J. Math., 7(1976), 91-94.
- [3] N. A. Assad and W. A. Kirk, Fixed point theorems for set-valued mappings of contractive type, Pacific J. Math. 43(1972), 553-562. G. Jungck, S. Radenovic, V. Radejovic, V. Rakocevic, Common
- [4] fixed point theorems for weakly compatible pairs on cone metric spaces, Fixed Point Theory Appl. 2009, Article ID 643840(2009),
- doi:10.1155/2009/643840. [5] R. Sumitra, V. R. Uthariaraj, R. Hemavathy, P. Vijayaraju, Common fixed point theorem for non-self mappings satisfying generalized Ciric type contraction condition in cone metric space, Fixed Point Theory and Applications, (2010), Article ID 408086, 17 pages
- [6] S. Radenovic and B. E. Rhoades, Fixed point theorem for two non-self mappings in cone metric spaces, Computers and Mathematics with Applications, 57(2009), 1701-1707.
- S. Jankovic, Z. Kadelburg, S. Radenovic, BE Rhoades, Assad-Kirk type [7] fixed point theorems for a pair of non-self mappings on cone metric spaces, Fixed Point Theory Appl. 2009, Article ID 761086(2009), doi:10.1155/2009/761086. L. B. Ciric, Contractive-type non-self mappings on metric spaces of
- [8] hyperbolic type, J. Math. Anal. Appl., 317(2006), 28-42
- [9] L. Ciric, V. Rakocevic, S. Radenovic, M. Rajovic, R. Lazovic, Common fixed point theorems for non-self mappings in metric spaces of hyperbolic type, Journal of Computational and Applied Mathematics, 233(2010), 2966-2974.
- [10] W. Takahashi, A convexity in metric spaces and nonexpansive mappings, I, Kodai Math. Sem. Rep. 22(1970), 142-149.