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Abstract

In the paper, by virtue of the Faá di Bruno formula, properties of the Bell polynomials of the second kind, and the inversion formula for the
Stirling numbers of the first and second kinds, the author finds simple, meaningful, and significant forms for coefficients in two families of
ordinary differential equations.
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1. Motivation and main results

In [2, Theorems 2.1] and [3, Theorem 2.1], it was established induc-
tively and recursively that the differential equations
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for n ∈ N have the same solution
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where
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k
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Hereafter, the expressions in (4) and (5) were employed in the whole
papers [2, 3].
In this paper, since

1. the original proofs of [2, Theorems 2.1] and [3, Theorem 2.1]
are long and tedious,

2. the expressions in (4) and (5) are too complicated to be remem-
bered, understood, and computed easily,

we will provide a nice and standard proof for [2, Theorems 2.1]
and [3, Theorem 2.1] and, more importantly, discover simple, mean-
ingful, and significant forms for the quantities ak(n) and Hn, j.
Our main results can be stated as the following theorem.

Theorem 1. For k ∈ N, the function F(t) defined by (3) satisfies
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)n n
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where s(n,k) and S(n,k) stand for the Stirling numbers of the first
and second kinds.

2. Proof of Theorem 1

The famous Faà di Bruno formula reads that
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for n ∈ N, where the Bell polynomials of the second kind
Bn,k(x1,x2, . . . ,xn−k+1) for n ≥ k ≥ 0 are defined [1, p. 134, Theo-
rem A] and [1, p. 139, Theorem C] by
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Applying u = h(t) = ln(1+λ t)
λ

and f (u) = ln(1+u) to (8) gives
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.

In light of two identities

Bn,k
(
abx1,ab2x2, . . . ,abn−k+1xn−k+1

)
= akbn Bn,k(x1,x2, . . . ,xn−k+1)

and

Bn,k(0!,1!,2!, . . . ,(n− k)!) = (−1)n−ks(n,k)
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The formula (6) is thus proved.
The inversion theorem [31, p. 171, Theorem 12.1] reads that

an =
n

∑
α=0

S(n,α)bα if and only if bn =
n

∑
k=0

s(n,k)ak. (9)

Combining (9) with (6) arrives at
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which can be rewritten as (7). The proof of Theorem 1 is complete.

3. Remarks

Finally, we list several remarks on our main results and closely
related things.

Remark 1. Comparing (1) and (2) with (7) and (6) reveals that

ak(n) = S(n,k)

and

Hn−1,k−1 = (−1)n−k s(n,k)
(n−1)!

(10)

for n ≥ k ≥ 1. These two expressions are simpler, more meaningful,
and more significant than the forms in (4) and (5). The expres-
sion (10) was also found in [18, 20].

Remark 2. We note that [3, Theorem 2.1] has also been discussed
in [27, Thorem 2].

Remark 3. The motivations in the papers [4, 5, 6, 7, 9, 10, 12, 11, 13,
14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32]
are same as the one in this paper.

Remark 4. This paper is a slightly modified version of the
preprint [8].
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