Fundamental groups of iterated line graphs

 
 
 
  • Abstract
  • Keywords
  • References
  • PDF
  • Abstract


    in this article, the Euler characteristic of the iterated line graph and its complement is studied.


  • References


    1. M. Aigner, "Graphs whose complement and line graph are isomorphic", J. of Combinatorial Theory 7 (1969) 273-275.
    2. J. Bondy, U. Murty, Graph theory with applications, New York: Macmillan; 1976.
    3. R. Ducke, "How is a graph's Betti number related to its genus?", The American Mathematical Monthly, Vol. 78, No. 4. (1971) 386-388.
    4. A. Hatcher, Algebraic topology, Cambridge University Press; 2001.
    5. R. Han, L. Gang, "Survey of maximum genus of graphs", J. of East China Normal University, No. 5 (2010), 1 19.
    6. M. Kotrbe?k, M. Skoviera, Matchings, "cycle bases, and the maximum genus of a graph", the electronic j. of combinatorics 19(3) (2012), #P3.
    7. F. Larrin, M. Pizaa, R. Villarroel-Flores, "The fundamental group of the clique graph", European J. Combin. 30 (2009) 288-294.
    8. M. Imbert, "Fundamental groups of fat graphs", Note di Matematica Vol. 19, No. 2(1999) 257-268.
    9. W. Massy, Algebraic topology: An introduction. Harcourt, Brace & World, New York; 1967.
    10. S. Nada, E. H. Hamouda, "Fundamental group of dual graphs and applications to quantum space-time", Chaos, Solitons and Fractals 42 (2009) 500-503.
    11. B. Schwartz, "On Interchange Graphs", pacific J. of Mathematics, Vol. 27,No. 2.; (1968) 393-396.
    12. J. Stallings, "Topology of Finite Graphs", Invent. Math. 71, 551-565 (1983).
    13. A. van Roij, H. Wilf, "The Interchange Graph of a finite graph", Acta. Math. 16, (1983) 263-269.
    14. D. Zhou, R. Hao, W. He, "Lower bounds for the maximum genus of 4-regular graphs", Turk J Math 36 (2012), 530 537.

 

View

Download

Article ID: 1489
 
DOI: 10.14419/gjma.v2i1.1489




Copyright © 2012-2015 Science Publishing Corporation Inc. All rights reserved.