Fundamental groups of iterated line graphs
-
2013-12-15 https://doi.org/10.14419/gjma.v2i1.1489 -
Abstract
in this article, the Euler characteristic of the iterated line graph and its complement is studied.
-
References
- M. Aigner, "Graphs whose complement and line graph are isomorphic", J. of Combinatorial Theory 7 (1969) 273-275.
- J. Bondy, U. Murty, Graph theory with applications, New York: Macmillan; 1976.
- R. Ducke, "How is a graph's Betti number related to its genus?", The American Mathematical Monthly, Vol. 78, No. 4. (1971) 386-388.
- A. Hatcher, Algebraic topology, Cambridge University Press; 2001.
- R. Han, L. Gang, "Survey of maximum genus of graphs", J. of East China Normal University, No. 5 (2010), 1 – 19.
- M. Kotrbeık, M. Skoviera, Matchings, "cycle bases, and the maximum genus of a graph", the electronic j. of combinatorics 19(3) (2012), #P3.
- F. Larrión, M. Pizaña, R. Villarroel-Flores, "The fundamental group of the clique graph", European J. Combin. 30 (2009) 288-294.
- M. Imbert, "Fundamental groups of fat graphs", Note di Matematica Vol. 19, No. 2(1999) 257-268.
- W. Massy, Algebraic topology: An introduction. Harcourt, Brace & World, New York; 1967.
- S. Nada, E. H. Hamouda, "Fundamental group of dual graphs and applications to quantum space-time", Chaos, Solitons and Fractals 42 (2009) 500-503.
- B. Schwartz, "On Interchange Graphs", pacific J. of Mathematics, Vol. 27,No. 2.; (1968) 393-396.
- J. Stallings, "Topology of Finite Graphs", Invent. Math. 71, 551-565 (1983).
- A. van Roij, H. Wilf, "The Interchange Graph of a finite graph", Acta. Math. 16, (1983) 263-269.
- D. Zhou, R. Hao, W. He, "Lower bounds for the maximum genus of 4-regular graphs", Turk J Math 36 (2012), 530 – 537.
-
Downloads
-
How to Cite
Hamouda, E., & Fahmy, M. (2013). Fundamental groups of iterated line graphs. Global Journal of Mathematical Analysis, 2(1), 1-5. https://doi.org/10.14419/gjma.v2i1.1489Received date: 2013-11-08
Accepted date: 2013-12-05
Published date: 2013-12-15