On paranorm \(BV_\sigma\) I-convergent sequence spaces defined by an Orlicz function

  • Authors

    • Vakeel.A. Khan
    • Ayhan Esi Adiyaman University, Science and Art Faculty, Department of Mathematics, 02040, Adiyaman, Turkey
    • Mohd Shafiq
    2014-03-16
    https://doi.org/10.14419/gjma.v2i2.2162
  • Bounded variation, Invariant mean, \(\sigma\)-Bounded variation, Ideal, Filter, Orlicz function, I-convergence, I-null, Solid space, Sequence algebra, paranorm.
  • Abstract

    In this article we introduce and study \(_{0}BV^I_\sigma(M,p)\), \(BV^I_{\sigma}(M,p)\) and \(_{\infty}BV^I_{\sigma}(M,p)\) sequence spaces where \(p=(p_{k})\) is the sequence of strictly positive real numbers with the help of \(BV_\sigma\) space [see [23]] and an Orlicz function \(M\). We study some topological and algebraic properties and decompostion theorem. Further we prove some inclusion relations related to these new spaces.
  • References

    1. Z.U.Ahmad,M.Mursaleen : An application of Banach limits. Proc.Amer. Math. soc. 103,244-246,(1983).
    2. S.Banach : Theorie des operations lineaires,Warszawa.(1932). 103,244-246(1986).
    3. V. K. Bhardwaj and N., Singh: Some sequence spaces defined by Orlicz functions.Demonstratio Math. 33(3) (2000) 571582.
    4. K. Demirci : I-limit superior and limit inferior.Math. Commun.,6:165-172(2001).
    5. A. Esi:Some new sequence spaces defined by Orlicz functions, Bull. Inst. Math. Acad. Sinica. 27 (1999) 7176.
    6. H.Fast:Sur la convergence statistique,Colloq.Math.2(1951),241-244.
    7. J.A.Fridy:On statistical convergence,Analysis.5(1985).301-313.
    8. B. Hazarika et al.:On paranormed Zweier ideal convergent sequence spaces defined By Orlicz function., Journal of the Egyptian Mathematical Society (2013), http://dx.doi.org/10.1016/j.joems.2013.08.005
    9. P.K.Kamthan and M.Gupta : Sequence spaces and series.Marcel Dekker Inc,New York.(1980).
    10. V.A. Khan :On a new sequence space defined by Orlicz Functions. Commun.Fac.Sci Univ.Ank.Series A1.57, 25-33,(2008).
    11. V.A. Khan, K. Ebadullah, A.Esi, N. Khan, M. Shafiq:On paranorm Zweier I-convergent sequences spaces, Journal of Mathematics (Hindawi Publishing Corporation) Volume 2013 (2013), Article ID 613501, 6 pages
    12. V.A Khan and K.Ebadullah :On some new I-convergent sequence space., Mathematics,Aeterna,Vol.3 No.2151-159(2013).
    13. V.A.Khan and K. Ebadullah,K.:On a new I-convergent sequence space.Analysis,32, 199-208(2012).
    14. J.P.King : Almost summable Sequences. Proc.Amer. Math. soc.17,1219-1225,(1966).
    15. P.Kostyrko,M. Macaj and T. Salat :Statistical convergence and I-convergence.Real Analysis Exchange.
    16. P.Kostyrko, T. Salat and W.Wilczynski :I-convergence,Raal Analysis Analysis Exchange.26(2),669-686(2000).
    17. C.G.Lascarides:On the equivalence of certain sets of sequences,Indian J. Math. 25(1983),41-52.
    18. J. Lindenstrauss and L. Tzafriri:On Orlicz sequence spaces, Israel J. Math. 101(1971) 379390.
    19. G.G. Lorentz,: A contribution to the theory of divergent series. Acta Math.,80: 167-190(1948).
    20. I.J.Maddox,: Elements of Functional Analysis,Cambridge University Press.(1970)
    21. I.J. Maddox :Paranormed sequence spaces generated by infinite matrices., Math. Proc. Cambridge Philos. Soc. 64 (1968) 335340
    22. M.Mursaleen: Matrix transformation between some new sequence spaces. Houston J. Math.,9: 505-509(1983).
    23. M. Mursaleen: On some new invariant matrix methods of summability. Quart. J. Math. Oxford,(2)34: 77-86(1983).
    24. H. Nakano: Modular sequence spaces., Proc. Jpn. Acad. Ser. A Math. Sci. 27 (1951) 508512.
    25. S.D.Parshar and B.Choudhary:Sequence Spaces Defined by Orlicz function.Indian J,Pure Appl.Math.25.419-428(1994) spaces. Math. Vesnik. 49 (1997) 187196.
    26. R.A.Raimi: Invariant means and invariant matrix methods of summability. Duke J. Math.,30: 81-94(1963).
    27. T. Salat,B.C.Tripathy and M.Ziman: On some properties of I-convergence.Tatra Mt. Math. Publ.,28: 279-286(2004).
    28. T. Salat B.C.Tripathy and M.Ziman: On I-convergence field. Ital.J.Pure Appl. Math.,17: 45-54(2005).
    29. P.Schafer: Infinite matrices and Invariant means. Proc.Amer. Math. soc.36,104-110,(1972).
    30. B.C.Tripathy and B.Hazarika: Paranorm I-convergent sequence spaces. Math. Slovaca.59(4):485-494(2009).
    31. B.C. Tripathy, B. Hazarika:I-convergent sequence spaces associated with multiplier sequences, Math. Ineq. Appl. 11 (3) (2008) 543548.
    32. B.C.Tripathy and B.Hazarika:Some I-Convergent sequence spaces defined by Orlicz function., Acta Mathematicae Applicatae Sinica.27(1)149-154.(2011)
  • Downloads

  • How to Cite

    Khan, V., Esi, A., & Shafiq, M. (2014). On paranorm \(BV_\sigma\) I-convergent sequence spaces defined by an Orlicz function. Global Journal of Mathematical Analysis, 2(2), 28-43. https://doi.org/10.14419/gjma.v2i2.2162

    Received date: 2014-03-10

    Accepted date: 2014-03-12

    Published date: 2014-03-16