A new Alzer type Inequality Related to Binomial Function

 
 
 
  • Abstract
  • Keywords
  • References
  • PDF
  • Abstract


    In this paper, we establish a new Alzer type inequality related to binomial function by using Sitnik methods.


  • Keywords


    Binomial Function; Alzer Type Inequality; Monotonicity

  • References


      [1] H. Alzer, An inequality for the exponential function. Arch. Math., 55(1990),462-464.

      [2] H. Alzer and G. Felder, A Turan-type inequality for the gamma function. J. Math.Anal. Appl., 350(2009), 105-109.

      [3]A Baricz and Ponnusamy, Saminathan and Singh, Sanjeev, Turan type inequalities for general Bessel functions. Mathematics, 19 2015, 709-719.

      [4] K. Dilcher, An inequality for sections of certain power series. Arch. Math., 60(1993),339-349.

      [5] Z. Abo-Hammour, O. Abu Arqub, S. Momani, N. Shawagfeh, Optimization Solution of Troesch’s and Bratu’s Problems of Ordinary Type Using Novel Continuous Genetic Algorithm. Discrete Dynamics in Nature and Society, vol. 2014, Article ID 401696, 15 pages, 2014. doi.10.1155/2014/401696.

      [6] M. Mehrez, Turan type inequalities for the q-exponential functions. Arabian Journal of Mathematics, 6(4), (2017), 309-314.

      [7] M. Mehrez and S. M. Sitnik, Proofs of some conjectures on monotonicity of ratios of Kummer, Gauss and generalized hypergeometric functions. (2014) Available online at http://arxiv.org/abs/1410.6120.

      [8] P. K. Menon, Some integral inequalities. Math. Student, 11 (1943),36-38.

      [9] S. M. Sitnik, Conjectures on monotonicity of ratios of Kummer and Gauss hypergeometric functions. Available online at http://arxiv.org/abs/1207.0936..

      [10] S. M. Sitnik and K. Mehrez, Proofs of some conjectures on monotonicity of ratios of Kummer, Gauss and generalized hypergeometric functions. Analysis, 36(4) 2016, 263-268.

      [11] N. Shawagfeh, O. Abu Arqub, S. Momani, Analytical solution of nonlinear second-order periodic boundary value problem using reproducing kernel method. Journal of Computational Analysis Applications, 16 (2014), 750-762.

      [12] M. Al-Smadi, O. Abu Arqub, N. Shawagfeh, S. Momani, Numerical investigations for systems of second-order periodic boundary value problems using reproducing kernel method . Applied Mathematics and Computation, 291 (2016), 137-148.

      [13] L. Yin and W. -Y. Cui, A generalization of Alzer inequalities related to exponential function. Proceeding of Jangjeon Mathematical Society, 18(3) 2015, 385-388.


 

View

Download

Article ID: 23665
 
DOI: 10.14419/gjma.v7i1.23665




Copyright © 2012-2015 Science Publishing Corporation Inc. All rights reserved.