On sums of odd and even terms of the K-Fibonacci numbers
-
2014-07-14 https://doi.org/10.14419/gjma.v2i3.2587 -
Abstract
In this paper, we define some properties of sums of k-Fibonacci numbers. Also we present the sum of consecutive members of k-Fibonacci numbers and the same thing for even and for odd k-Fibonacci numbers. Mainly, Binet’s formula will be used to establish properties of k-Fibonacci numbers.
Keywords: K-Fibonacci Numbers, K-Lucas Numbers, Binet’s Formula.
-
References
- A. Chen and H. Chen, "Identities for the Fibonacci Powers", International Journal of Mathemtical Education 39(4) (2008), 534-541.
- A. T. Benjamin and J. J. Quinn, “Recounting Fibonacci and Lucas identities”, College Math. J., 30(5): (1999), 359-366.
- D. Kalman, R. Mena, The Fibonacci numbers - exposed. Math Mag., 76 (2003), 167–81.
- D. Jennings, "On sums the reciprocals of Fibonacci and Lucas Numbers", The Fibonacci Quarterly, 32(1) (1994), 18-21.
- H. Belbachir and F. Bencherif, “Sums of products of generalized Fibonacci and Lucas numbers”, arXiv: 0708.2347v1 [math.NT], (2007).
- R. S. Melham, "Sums of certain products of Fbonacci and Lucas Numbers", The Fibonacci Quarterly 37(3) (1999), 248-251.
- S. Clarly and D. Hemenway, "On sums of cubes of Fibonacci Numbers", In Applications of Fibonacci Numbers 5 (1993), 123-136.
- S. Falco´n, on the k-Lucas numbers. International Journal of Contemporary Mathematical Sciences, 6(21) (2011), 1039-1050.
- S. Falco´n, On the Lucas Triangle and its Relationship with the k-Lucas numbers. Journal of Mathematical and Computational Science, 2(3) (2012), 425-434.
- S. Falco´n, Plaza, A.: On the Fibonacci k-numbers. Chaos, Solitons & Fractals, 32(5) (2007), 1615-1624.
- S. Falco´n, Plaza, A.: The k-Fibonacci hyperbolic functions. Chaos, Solitons & Fractals, 38(2) (2008), 409–20.
- S. Falco´n, Plaza, A.: The k-Fibonacci sequence and the Pascal 2-triangle. Chaos, Solitons &Fractals, 33(1) (2007), 38-49.
- S. Vajda, Fibonacci and Lucas numbers, and the golden section. Theory and applications. Chichester: Ellis Horwood limited (1989).
- T. Koshy, “Fibonacci and Lucas Numbers with Applications”, A Wiley-Interscience Publication, New York, (2001).
- V. E. Hoggat, Fibonacci and Lucas numbers. Palo Alto, CA: Houghton, (1969).
- V. Rajesh and G. Leversha, “Some properties of odd terms of the Fibonacci sequence”, Mathematical Gazette, 88(511): (2004), 85–86.
- Y. Yazlik, N. Yilmaz and N. Taskara, “On the Sums of Powers of k-Fibonacci and k-Lucas Sequences” Selçuk J. Appl. Math., Special Issue (2012), 47-50.
- Z. Čerin, “Alternating sums of Lucas numbers”, Central European Journal of Mathematics, 3(1): (2005), 1-13.
- Z. Čerin, “On sums of squares of odd and even terms of the Lucas sequence”, Proceedings of the 11th Fibonacci Conference, (to appear).
- Z. Čerin, “Properties of odd and even terms of the Fibonacci sequence”, Demonstratio Mathematica, 39(1): (2006), 55–60.
- Z. Čerin and G. M. Gianella, “On sums of Pell numbers”, Acc. Sc. Torino – Atti Sc. Fis. 140, xx-xx. web.math.pmf.unizg.hr/~cerin/c165.pdf, (2006).
- Z. Čerin and G. M. Gianella, “On sums of squares of Pell-Lucas numbers”, INTEGERS: Electronic Journal of Combinatorial Number Theory, 6, #A15, (2006).
-
Downloads
Additional Files
-
How to Cite
Panwar, Y., Rathore, G. P., & Chawla, R. (2014). On sums of odd and even terms of the K-Fibonacci numbers. Global Journal of Mathematical Analysis, 2(3), 115-119. https://doi.org/10.14419/gjma.v2i3.2587Received date: 2014-04-29
Accepted date: 2014-05-24
Published date: 2014-07-14