Discrete prey-predator model with Beddington-DeAngelis functional response: simple vs. complex dynamics
-
2014-07-03 https://doi.org/10.14419/gjma.v2i3.2795 -
Abstract
In this paper the dynamics of a discrete-time prey-predator system is investigated in the closed first quadrant . The existence and stability of fixed points are analyzed algebraically .The conditions of existence for flip bifurcation is derived by busing center manifold theorem and bifurcation theory. Numerical simulations not only illustrate our results but also exhibit complex dynamical behaviors of the model, such as the periodic-doubling bifurcation in periods 2,4 and 8 and quasi-periodic orbits and chaotic sets.
Keywords: Discrete Model, Beddington-Deangelis Functional Response, Stability, Flip Bifurcation, Center Manifold Theorem, Numerical Simulation.
-
References
- H.N. Agiza, E.M. Elabbasy, H. El-Metwally, A.A. Elsadany, Chaotic dynamics of a discrete prey-predator model with holling type II,NonliearAnal. 10 (2009) 116-129.
- J.R. Beddington, Mutual interference between parasites or predators andits effect on searching e_ciency,J. Animal Ecol. 44 (1975) 331-340.
- C. Celik, O. Duman, Allee effect in a discrete-time predator-prey system,Chaos Solitons Fractals 40 (2009) 1956-1962.
- D.L. DeAngelis, R.A. Goldstein, R.V. O'Neill, A model for trophic interaction,Ecology, 56 (1975) 881-892.
- J. Guckenheimer, P. Holmes, Nonlinear Oscillations, dynamical systemsand bifurcation of vector fields, Springer- Verlag, New York, (1983).
- Hainzl J. 1988. Stability and Hopf bifurcation a predator-prey system with several parameters. SIAM Journal on Applied Mathematics, 48: 170-180 .
- He X. 1996.Stability and delays in a predator-prey system. Journal of Mathematical Analysis and Applications, 198: 355-370.
- Z.He, X.Lai , Bifurcation and chaos behavior of a discrete-time predator-prey system,Nonliear Anal. 12 (2011) 403-417.
- C.S. Holling, The functional response of predator to prey density and itsrole in mimicry and population regulation,Mem. Ent. Soc. Canada, 45(1965) 1-60.
- Z. Hu, Z.Teng, L. Zhang, Stability and bifurcation analysis of a discretepredator-prey model with nonmonotonic functional response,NonliearAnal. 12 (2011) 2356-2377.
- Z. Jing, J. Yang, Bifurcation and chaos in discrete-time predator-prey sys-tem, Chaos Solitons Fractals 27 (2006) 259-277.
- T.K. Kar, A. Batabyal, Stability and bifurcation of a prey-predator modelwith time delay, C. R. Biol. 332 (2009) 642-651.
- F. Lian, Y. Xu, Hopf bifurcation analysis of a predator-prey system withHolling IV functional response and time delay,Appl. Math. Comput. 215(2009) 1484-1495.
- R. M. May, 1975. Biological populations obeying difference equations: stable points, stable cycles and chaos. Journal of Theoretical Biology, 51(2): 511-524 .
- Murray JD. 1998. Mathematical Biology. Springer-Verlag, Berlin, Germany.
- X. Liao, S. Zhou, Y. Chen, On permanence and global stability in a general Gilpin-Ayala competition predator-prey discrete system,Appl. Math.Comput. 190 (2007) 500-509.
- X. Liu, D. Xiao, Complex dynamic behaviors of a discrete-time predator-prey system,Chaos Solitons Fractals 32 (2007) 80-94.
- A.J. Lotka, Elements of Mathematical Biology, Dover, New York, 1962.
- R.Naji , A. Balasim, Dynamical behavior of a three species food chainmodel with Beddington-DeAngelis functional response,Chaos SolitonsFractals, 32 (2007) 1853-1866.
- R. Redheffer, Nonautonomous Lotka-Volterra systems, I,J. DifferentiaEquations 127 (1996) 519-541.
- Y. Song, S. Yuan, J. Zhang, Bifurcation analysis in the delayed Leslie-Gower predator-prey system,Appl. Math. Model. 33 (2009) 4049-4061.
- V. Voltera, Operematematiche: mmemorie e note, vol. V, Acc. Naz. DeiLincei, Roma, Cremon, 1962.
- S. Zhang , D Tan , L. Chen, Dynamic complexities of a food chain modelwith impulsive perturbations and Beddington-DeAngelis functional response, Chaos, Solitons and Fractals, 27 (2006) 768-777.
-
Downloads
-
How to Cite
Agrawal, T. (2014). Discrete prey-predator model with Beddington-DeAngelis functional response: simple vs. complex dynamics. Global Journal of Mathematical Analysis, 2(3), 105-110. https://doi.org/10.14419/gjma.v2i3.2795Received date: 2014-05-13
Accepted date: 2014-06-14
Published date: 2014-07-03