Presentations of a numerical semigroup
-
2020-04-28 https://doi.org/10.14419/gjma.v8i1.30464 -
Catenary Degree, Complete Intersection, Connectedness, Minimal Presentations, Numerical Semigroups. -
Abstract
In this paper, we mainly study the minimal presentations of numerical semigroups. Moreover, we examine the concept of gluing, complete intersection, catenary degree, elasticity of some numerical semigroups.
Â
Â
-
References
[1] V. Barucci, Valentina Numerical semigroup algebras, in Multiplicative ideal theory in commutative algebra, 39-53, Springer, New York, 2006. “available online : https://doi.org/10.1007/978-0-387-36717-0_3†.
[2] V. Barucci, D. E. Dobbs, M.Fontana, Maximality Properties in Numerical Semigroups and Applications to One-Dimensional Analytically Irreducible Local Domains, Memoirs of the Amer. Math. Soc. 598 (1997). “available online : https://doi.org/10.1090/memo/0598†.
[3] L. Redei, The theory of finitely generated commutative semigroups, Pergamon, Oxford-Edinburgh-New York, 1965.
[4] P. Freyd, Redei’s finiteness theorem for commutative semigroups, Proc. Amer. Math. Soc. 19 (1968), 1003. “available online : https://doi.org/10.1090/S0002-9939-1968-0227290-4â€.
[5] P. A. Grillet, A short proof of Redei’s theorem, Semigroup Forum 46 (1993), 126-127.â€available online : https://doi.org/10.1007/BF02573555â€.
[6] J. Herzog, Generators and relations of abelian semigroups and semigroup rings, Manuscripta Math. 3 (1970), 175-193. “available online : https://doi.org/10.1007/BF01273309â€.
[7] J. C. Rosales, Function minimum associated to a congruence on integral n-tuple space, Semigroup Forum 51 (1995) 87-95. “available online : https://doi.org/10.1007/BF02573622â€.
[8] J. C. Rosales, P.A. Garcia-Sanches, J.M. Urbano-Blanco, On presentations of commutative monoids, Internat. J. Algebra Comput. 9 (1999), no. 5, 539-553. “available online : https://doi.org/10.1142/S0218196799000333â€.
[9] J. C. Rosales, Semigrupos numericos, Tesis Doctoral, Universidad de Granada, Spain, 2001.
[10] J. C. Rosales, An algorithmic method to compute a minimal relation for any numerical semigroup, Internat. J. Algebra Comput. 6 (1996), no. 4, 441-455.†available online : https://doi.org/10.1142/S021819679600026Xâ€.
[11] H. Bresinsky, On prime ideals with generic zeo , Proc. Amer. Math. Soc. 47 (1975), 329-332. “available online : https://doi.org/10.2307/2039739â€.
[12] D. Narsingh, Graph Theory with Applications to Engineering and Computer Science, Prentice Hall Series in Automatic Computation, 1974.
[13] (Assi ve Garcia-Sanchez, 2014; Chapman ve ark., 2016; O’Neil ve ark., 2016).
[1]Rosales,J.C., Garcia-Sanches,P.A.,Numerical Semigroups,Springer,New York,2009.
[2]Abdallah, A., Garcia-Sanches, P.A.,Numerical Semigroups and Applications, Springer,Switzerland,2016.
[3]Omidali, M., Rahmati,F.,On the type and the minimal presentation of certain numerical semigroups,Communications in Algebra,37,4,(2009),1275-1283.
[4] Herzog,J.,Generators and relations of abelian semigroups and semigroups rings,Manuscripta Mathematica,3,2,(1970),175-193.
[5] Kunz,E.,The Value-Semigroup of a One-Dimensional Gorenstein Ring,Proceedings of the American Mathematical Society,25,4,(1970),748-751.
[6]Rosales,J.C., Garcia-Sanches,P.A., Numerical Semigroups(Developments in Mathematics),Springer, New York,2009.
[7] V.Barucci, Valentina Numerical semigroup algebras, in Multiplicative ideal theory in commutative algebra, 39-53, Springer,New York,2006.
[8] V.Barucci, D.E. Dobbs, M.Fontana, Maximality Properties in Numerical Semigroups and Applications to One-Dimensional Analytically Irreducible Local Domains, Memoirs of the Amer. Math. Soc. 598 (1997).
[9] L.Redei, The theory of finitely generated commutative semigroups, Pergamon, Oxford-Edinburgh-New York, 1965.
[10] P. Freyd, Redei’s finiteness theorem for commutative semigroups, Proc. Amer. Math. Soc. 19 (1968), 1003.
[11] P.A. Grillet, A short proof of Redei’s theorem, Semigroup Forum, Semigroup Forum 46 (1993), 126-127.
[12] J. Herzog, Generators and relations of abelian semigroups and semigroup rings, Manuscripta Math. 3 (1970), 175-193.
[13] J. C. Rosales, Function minimum associated to a congruence on integral n-tuple space, Semigroup Forum 51 (1995) 87-95.
[14] J. C. Rosales, P.A. Garcia-Sanches, J.M. Urbano-Blanco, On presentations of commutative monoids, Internat. J. Algebra Comput. 9 (1999), no. 5, 539-553.
[15] J. C. Rosales, Semigrupos numericos, Tesis Doctoral, Universidad de Granada, Spain, 2001.
[16] J. C. Rosales, An algorithmic method to compute a minimal relation for any numerical semigroup, Internat. J. Algebra Comput. 6 (1996), no. 4, 441-455.
[17] H. Bresinsky, On prime ideals with generic zeo , Proc. Amer. Math. Soc. 47 (1975), 329-332.
[18] D. Narsingh, Graph Theory with Applications to Engineering and Computer Science, Prentice Hall Series in Automatic Computation, 1974.
[19] (Assi ve Garcia-Sanchez, 2014; Chapman ve ark., 2016; O’Neil ve ark., 2016).
[20] (Assi ve Garcia-Sanchez, 2014; Chapman ve ark., 2016; O’Neil ve ark., 2016).
-
Downloads
-
How to Cite
Özer, B., & Kanbay, S. (2020). Presentations of a numerical semigroup. Global Journal of Mathematical Analysis, 8(1), 1-8. https://doi.org/10.14419/gjma.v8i1.30464Received date: 2020-02-25
Accepted date: 2020-04-11
Published date: 2020-04-28