Mapping portfolio optimisation: a systematic and bibliometric review

  • Authors

    • Preeti Bai Agrawal Junior Research Fellow
    • Dr. Anuradha Samal Asst. Prof., Dept. of Business Administration, Sambalpur University
    2024-10-31
    https://doi.org/10.14419/nfmybb32
  • Portfolio Optimization; Bibliometric Analysis; Systematic Review; Modern Portfolio Theory; Artificial Intelligence; Financial Modeling.
  • Abstract

    Purpose: This study provides a comprehensive analysis of the evolution of portfolio optimization over the last three decades, employing systematic review and advanced bibliometric techniques to map key trends, influential works, and significant contributors in the field.

    Design/Methodology/Approach: Adhering to PRISMA guidelines, we conducted a systematic review and bibliometric analysis of 1,000 articles sourced from the Web of Science database, spanning from 1989 to 2023. Advanced bibliometric tools, including citation analysis, co-occurrence analysis, and network visualization, were utilized to identify prominent authors, influential journals, and emerging research themes.

    Findings: Our analysis reveals a significant growth in portfolio optimization literature, particularly in recent years. Key findings include the identification of pivotal authors, foundational papers, and leading journals that have shaped the field. The study also traces the methodological evolution from traditional models, like Markowitz's Modern Portfolio Theory, to contemporary approaches incorporating artificial intelligence and machine learning.

    Practical Implications: This study offers valuable insights for researchers and practitioners by highlighting critical developments in portfolio optimization. It also suggests areas for future research, particularly in integrating advanced data analytics and AI-driven methodologies into portfolio management.

    Originality/Value: This paper stands out by combining systematic review with a comprehensive bibliometric analysis, offering a holistic view of the portfolio optimization landscape. It not only synthesizes past research but also identifies emerging trends and gaps, providing a foundation for future explorations in this dynamic field.

  • References

    1. Albuquerque, P. H. M., de Moraes Souza, J. G., & Kimura, H. (2023). Artificial intelligence in portfolio formation and forecast: Using different variance-covariance matrices. Communications in Statistics - Theory and Methods, 52(12), 4229–4246. https://doi.org/10.1080/03610926.2021.1987472.
    2. Alexander, G. J., & Baptista, A. M. (2002a). Economic implications of using a mean-VaR model for portfolio selection: A comparison with mean-variance analysis. In Journal of Economic Dynamics & Control (Vol. 26). www.elsevier.com/locate/econbase. https://doi.org/10.1016/S0165-1889(01)00041-0.
    3. Alexander, G. J., & Baptista, A. M. (2002b). Economic implications of using a mean-VaR model for portfolio selection: A comparison with mean-variance analysis. In Journal of Economic Dynamics & Control (Vol. 26). www.elsevier.com/locate/econbase. https://doi.org/10.1016/S0165-1889(01)00041-0.
    4. Artzner, P., Delbaen, F., Eber, J. M., & Heath, D. (1999). Coherent measures of risk. Mathematical Finance, 9(3), 203–228. https://doi.org/10.1111/1467-9965.00068.
    5. Bartram, S. M., Branke, J., & Motahari, M. (n.d.). CFA INSTITUTE RESEARCH FOUNDATION / LITERATURE REVIEW ARTIFI-CIAL INTELLIGENCE IN ASSET MANAGEMENT.
    6. Black, F., & Litterman, R. (n.d.). Global Portfolio Optimization. In Source: Financial Analysts Journal (Vol. 48, Issue 5). https://doi.org/10.2469/faj.v48.n5.28.
    7. Colapinto, C., & Mejri, I. (2024). The relevance of goal programming for financial portfolio management: a bibliometric and systematic literature review. Annals of Operations Research. https://doi.org/10.1007/s10479-024-05911-y.
    8. Deng, L., Ma, C., & Yang, W. (2011). Portfolio Optimisation via Pair Copula-GARCH-EVT-CVaR Model. Systems Engineering Proce-dia, 2, 171–181. https://doi.org/10.1016/j.sepro.2011.10.020.
    9. Donthu, N., Kumar, S., Mukherjee, D., Pandey, N., & Lim, W. M. (2021). How to conduct a bibliometric analysis: An overview and guidelines. Journal of Business Research, 133, 285–296. https://doi.org/10.1016/j.jbusres.2021.04.070.
    10. Dzikowski, P. (2018). A bibliometric analysis of born global firms. Journal of Business Research, 85, 281–294. https://doi.org/10.1016/j.jbusres.2017.12.054.
    11. Elton, E. J., & Gruber, M. J. (n.d.). Modern portfolio theory, 1950 to date.
    12. Engle, R. (2001). GARCH 101: The Use of ARCH/GARCH Models in Applied Econometrics. In Journal of Economic Perspectives (Vol. 15, Issue 4). https://doi.org/10.1257/jep.15.4.157.
    13. ENGLE, R. F., & NG, V. K. (1993). Measuring and Testing the Impact of News on Volatility. The Journal of Finance, 48(5), 1749–1778. https://doi.org/10.1111/j.1540-6261.1993.tb05127.x.
    14. Fabretti, A., & Herzel, S. (2012). Delegated portfolio management with socially responsible investment constraints. European Journal of Finance, 18(3–4), 293–309. https://doi.org/10.1080/1351847X.2011.579746.
    15. Fama, E. F., & French, K. R. (n.d.). A Five-Factor Asset Pricing Model. http://ssrn.com/abstract=2287202Electroniccopyavailableat:https://ssrn.com/abstract=2287202Electroniccopyavailableat:https://ssrn.com/abstract=2287202
    16. Fama, E. F., & French, K. R. (1993). Common risk factors in the returns on stocks and bonds*. In Journal of Financial Economics (Vol. 33). https://doi.org/10.1016/0304-405X(93)90023-5.
    17. García, S., Quintana, D., Galván, I. M., & Isasi, P. (2012). Time-stamped resampling for robust evolutionary portfolio optimisation. Expert Systems with Applications, 39(12), 10722–10730. https://doi.org/10.1016/j.eswa.2012.02.195.
    18. Ghahtarani, A., Saif, A., & Ghasemi, A. (2022). Robust portfolio selection problems: a comprehensive review. In Operational Research (Vol. 22, Issue 4, pp. 3203–3264). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/s12351-022-00690-5.
    19. Ghanbari, H., Safari, M., Ghousi, R., Mohammadi, E., & Nakharutai, N. (2023a). Bibliometric analysis of risk measures for portfolio optimisation. Accounting, 9(2), 95–108. https://doi.org/10.5267/j.ac.2022.12.003.
    20. Ghanbari, H., Safari, M., Ghousi, R., Mohammadi, E., & Nakharutai, N. (2023b). Bibliometric analysis of risk measures for portfolio optimisation. Accounting, 9(2), 95–108. https://doi.org/10.5267/j.ac.2022.12.003.
    21. Ghodrati, H., & Zahiri, Z. (2014). A Monte Carlo simulation technique to determine the optimal portfolio. Management Science Letters, 465–474. https://doi.org/10.5267/j.msl.2014.1.023.
    22. Gunjan, A., & Bhattacharyya, S. (2023a). A brief review of portfolio optimisation techniques. Artificial Intelligence Review, 56(5), 3847–3886. https://doi.org/10.1007/s10462-022-10273-7.
    23. Gunjan, A., & Bhattacharyya, S. (2023b). A brief review of portfolio optimisation techniques. Artificial Intelligence Review, 56(5), 3847–3886. https://doi.org/10.1007/s10462-022-10273-7.
    24. Gustavo Carvalho Santos, F. B. A. C. P. V. (n.d.). Portfolio Optimisation using Artificial Intelligence: A Systematic Literature Review. Retrieved 6 January 2024, from https://www.researchgate.net/publication/362660222_Portfolio_Optimization_using_Artificial_Intelligence_A_Systematic_Literature_Review.
    25. H. Kent Baker, J. R. N. A. C. S. (n.d.). DESIGNING YOUR PORTFOLIO: THE ROLE OF ASSET ALLOCATION, DIVERSIFICATION, AND REBALANCING. Retrieved 6 January 2024, from https://www.emerald.com/insight/content/doi/10.1108/978-1-83909-608-220201005/full/html.
    26. Hayes, A. S. (2021). The active construction of passive investors: Robo-advisors and algorithmic “low-finance.” Socio-Economic Re-view, 19(1), 83–110. https://doi.org/10.1093/ser/mwz046.
    27. Idzorek, T. M. (2004). A STEP-BY-STEP GUIDE TO THE BLACK-LITTERMAN MODEL Incorporating user-specified confidence levels.
    28. Jagannathan, R., & Ma, T. (2003). Risk Reduction in Large Portfolios: Why Imposing the Wrong Constraints Helps. In Source: The Journal of Finance (Vol. 58, Issue 4). https://doi.org/10.1111/1540-6261.00580.
    29. Jahan, N., Naveed, S., Zeshan, M., & Tahir, M. A. (2016). How to Conduct a Systematic Review: A Narrative Literature Review. Cure-us. https://doi.org/10.7759/cureus.864.
    30. Kalayci, C. B., Ertenlice, O., & Akbay, M. A. (2019). A comprehensive review of deterministic models and applications for mean-variance portfolio optimisation. In Expert Systems with Applications (Vol. 125, pp. 345–368). Elsevier Ltd. https://doi.org/10.1016/j.eswa.2019.02.011.
    31. Karp, A. (2017). The Capital Asset Pricing Model and Fama-French Three Factor Model in An Emerging Market Environment. In In-ternational Business & Economics Research Journal-Third Quarter (Vol. 16, Issue 3). https://doi.org/10.19030/iber.v16i4.10040.
    32. Kilsgård, D., & Wittorf, F. (n.d.). The Fama and French Three-Factor Model-Evidence from the Swedish Stock Market.
    33. Kolm, P. N., Tütüncü, R., & Fabozzi, F. J. (2014). 60 Years of portfolio optimisation: Practical challenges and current trends. European Journal of Operational Research, 234(2), 356–371. https://doi.org/10.1016/j.ejor.2013.10.060.
    34. Kumar, A., Nadeem, M., & Banka, H. (2023). Nature inspired optimisation algorithms: a comprehensive overview. In Evolving Sys-tems (Vol. 14, Issue 1, pp. 141–156). Institute for Ionics. https://doi.org/10.1007/s12530-022-09432-6.
    35. Lin, M., & SenGupta, I. (2023). Analysis of optimal portfolio on finite and small-time horizons for a stochastic volatility model with multiple correlated assets. http://arxiv.org/abs/2302.06778. https://doi.org/10.1142/S0219024924500237.
    36. Mangram, M. E. (2013). A SIMPLIFIED PERSPECTIVE OF THE MARKOWITZ PORTFOLIO THEORY (Vol. 7). http://ssrn.com/abstract=2147880
    37. Markowitz, H. (1952). PORTFOLIO SELECTION*. The Journal of Finance, 7(1), 77–91. https://doi.org/10.1111/j.1540-6261.1952.tb01525.x.
    38. Markowitz, H. M. (1989). Review Reviewed Work(s): Mean-Variance Analysis in Portfolio Choice and Capital Markets by The Journal of Finance (Vol. 44, Issue 2). https://doi.org/10.2307/2328607.
    39. Mazraeh, N. B., Daneshvar, A., Madanchi Zaj, M., & Roodposhti, F. R. (2022). Stock Portfolio Optimization Using a Combined Ap-proach of Multiobjective Grey Wolf Optimizer and Machine Learning Preselection Methods. Computational Intelligence and Neurosci-ence, 2022. https://doi.org/10.1155/2022/5974842.
    40. Mellal, M. A., Zio, E., & Williams, E. J. (2020). Cost minimisation of repairable systems subject to availability constraints using an efficient cuckoo optimisation algorithm. Quality and Reliability Engineering International, 36(3), 1098–1110. https://doi.org/10.1002/qre.2617.
    41. Milhomem, D. A., & Dantas, M. J. P. (2020a). Analysis of New Approaches Used in Portfolio Optimisation: a Systematic Literature Review. Production, 30, 1–16. https://doi.org/10.1590/0103-6513.20190144.
    42. Milhomem, D. A., & Dantas, M. J. P. (2020b). Analysis of New Approaches Used in Portfolio Optimisation: a Systematic Literature Review. Production, 30, 1–16. https://doi.org/10.1590/0103-6513.20190144.
    43. Molina, D., Poyatos, J., Ser, J. Del, García, S., Hussain, A., & Herrera, F. (2020). Comprehensive Taxonomies of Nature- and Bio-inspired Optimisation: Inspiration Versus Algorithmic Behavior, Critical Analysis Recommendations. Cognitive Computation, 12(5), 897–939. https://doi.org/10.1007/s12559-020-09730-8.
    44. Oberoi, S., Girach, M. B., & Chakrabarty, S. P. (2019). Can robust optimisation offer improved portfolio performance?: An empirical study of the Indian market. http://arxiv.org/abs/1908.04962
    45. Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., … Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. In The BMJ (Vol. 372). BMJ Publishing Group. https://doi.org/10.1136/bmj.n71.
    46. Pandey, M. (2012). APPLICATION OF MARKOWITZ MODEL IN ANALYSING RISK AND RETURN A CASE STUDY OF BSE STOCK. In Risk governance & control: financial markets & institutions (Vol. 2, Issue 1). https://doi.org/10.22495/rgcv2i1art1.
    47. Pattnaik, M., & Pattnaik, A. (n.d.). Machine Learning Algorithms to Fight the COVID-19 Pandemic. https://doi.org/10.1101/2022.12.31.22284091.
    48. Perianes-Rodriguez, A., Waltman, L., & van Eck, N. J. (2016). Constructing bibliometric networks: A comparison between full and fractional counting. Journal of Informetrics, 10(4), 1178–1195. https://doi.org/10.1016/j.joi.2016.10.006.
    49. Pinar, M. Ç. (2013). Static and dynamic VaR-constrained portfolios with application to delegated portfolio management. Optimisation, 62(11), 1419–1432. https://doi.org/10.1080/02331934.2013.854785.
    50. Reddy Irala, L., Patil, P., & Patil, P. (n.d.). Portfolio Size and Diversification. In SCMS Journal of Indian Management (Vol. 4, Issue 1). http://ssrn.com/abstract=977763.
    51. Resta, M. (2012). Portfolio Optimisation: New Challenges and Perspectives. In Recent Patents on Computer Science (Vol. 5). https://doi.org/10.2174/1874479611205010059.
    52. Rigamonti, A., & Lučivjanská, K. (2022). Mean-semivariance portfolio optimisation using minimum average partial. Annals of Opera-tions Research. https://doi.org/10.1007/s10479-022-04736-x.
    53. Risk management in the Indian stock market. (n.d.).
    54. Rojas-Sánchez, M. A., Palos-Sánchez, P. R., & Folgado-Fernández, J. A. (2023). Systematic literature review and bibliometric analysis on virtual reality and education. Education and Information Technologies, 28(1), 155–192. https://doi.org/10.1007/s10639-022-11167-5.
    55. Roman, D., & Mitra, G. (2009). Portfolio selection models: a review and new directions. Wilmott Journal, 1(2), 69–85. https://doi.org/10.1002/wilj.4.
    56. Santos, G. C., Barboza, F., Veiga, A. C. P., & Gomes, K. (2022). Portfolio Optimisation using Artificial Intelligence: A Systematic Lit-erature Review. Exacta. https://doi.org/10.5585/exactaep.2022.21882.
    57. Sharma, L., Chellapilla, V. L., & Chellapilla, P. (2023). Socio-inspired evolutionary algorithms: a unified framework and survey. Soft Computing, 27(19), 14127–14156. https://doi.org/10.1007/s00500-023-07929-z.
    58. Sharpe, W. F. (1964). CAPITAL ASSET PRICES: A THEORY OF MARKET EQUILIBRIUM UNDER CONDITIONS OF RISK. The Journal of Finance, 19(3), 425–442. https://doi.org/10.1111/j.1540-6261.1964.tb02865.x.
    59. Siaw, R. O., Dei Ofosu-Hene, E., & Evans, T. (2015). ELK ASIA PACIFIC JOURNAL OF FINANCE AND RISK MANAGEMENT INVESTMENT PORTFOLIO OPTIMISATION WITH GARCH MODELS. 8. https://doi.org/10.16962/EAPJFRM/issn
    60. Statman, M. (1987). How Many Stocks Make a Diversified Portfolio? In Source: The Journal of Financial and Quantitative Analysis (Vol. 22, Issue 3). https://doi.org/10.2307/2330969.
    61. Teplova, T., Evgeniia, M., Munir, Q., & Pivnitskaya, N. (2023). Black-Litterman model with copula-based views in mean-CVaR port-folio optimisation framework with weight constraints. Economic Change and Restructuring, 56(1), 515–535. https://doi.org/10.1007/s10644-022-09435-y.
    62. Thein Lwin, K. (2015). Evolutionary Approaches for Portfolio Optimization.
    63. Trimech, A., & Kortas, H. (2009). 61 Multiscale Carhart Four-Factor Pricing Model: Application to the French Market Multiscale Car-hart Four-Factor Pricing Model: Application to the French Market. https://doi.org/10.1108/15265940910938251.
    64. Xidonas, P., Steuer, R., & Hassapis, C. (2020). Robust portfolio optimisation: a categorised bibliographic review. Annals of Operations Research, 292(1), 533–552. https://doi.org/10.1007/s10479-020-03630-8.
    65. Xu, S., Zhang, X., Feng, L., & Yang, W. (2020). Disruption risks in supply chain management: a literature review based on biblio-metric analysis. In International Journal of Production Research (Vol. 58, Issue 11, pp. 3508–3526). Taylor and Francis Ltd. https://doi.org/10.1080/00207543.2020.1717011.
    66. Yang, Y., Zhao, L., Chen, L., Wang, C., & Han, J. (n.d.). Portfolio optimisation with idiosyncratic and systemic risks for financial net-works.
    67. Zaimovic, A., Omanovic, A., & Arnaut-Berilo, A. (2021). How Many Stocks Are Sufficient for Equity Portfolio Diversification? A Re-view of the Literature. In Journal of Risk and Financial Management (Vol. 14, Issue 11). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/jrfm14110551.
    68. Zanjirdar, M. (2020). Overview of Portfolio Optimization Models. Advances in Mathematical Finance & Applications, 5(4), 419–435. https://doi.org/10.22034/amfa.2020.1897346.1407
    69. Zhou, H. (2017). Algorithmic Trading and High Frequency Trading.
    70. Zhou, W., Zhu, W., Chen, Y., & Chen, J. (2022). Dynamic changes and multi-dimensional evolution of portfolio optimisation. Eco-nomic Research-Ekonomska Istrazivanja , 35(1), 1431–1456. https://doi.org/10.1080/1331677X.2021.1968308
  • Downloads

  • How to Cite

    Agrawal, P. B., & Anuradha Samal , D. (2024). Mapping portfolio optimisation: a systematic and bibliometric review. Global Journal of Mathematical Analysis, 11(1), 1-10. https://doi.org/10.14419/nfmybb32