Line segment cracks identification via the reciprocity gap principle and Fourier transform

  • Authors

    • Belgacem Maher
    • Mahjoub Moncef LAMSIN National Engineering School of Tunis,1002 TUNISIA
    • Boukricha Aabderrahmane Universiy of Tunis El Manar, Faculty of Science of Tunis, 2092, TUNISIA
    2014-09-10
    https://doi.org/10.14419/gjma.v2i4.3305
  • Abstract

    The problem of determining a crack by overspecified boundary data is considered. When complete data are avaible on the external boundary.A link that is established between the Reciprocity gap functional and the Fourier transform of the temperature is introduced.If the crack is known (or assumed)to be line, an explicit inversion formulae is obtained and determination of the host line equation and the length of the crack in the two-dimensional (2D) situation. Numerical tests of the identification methods proposed show very good accuracies and significant computational costs.

    Keywords: Cauchy problem, Inverse geometric problem,the reciprocity gap principle,identification of crack, Fourier Transform,finite element method.

  • References

    1. M. Jaoua, J. Leblond, M. Mahjoub, and J R. Partington. Robust numerical algorithms based on analytic approximation for the solution of inverse problems in annular domains. IMA, pages 1-26, 2008.
    2. M. Kallel. Algorithmes rapides pour l'identification de fissures. Thèse de 3ème cycle,ENIT, Tunis, Tunisie,, 2005.
    3. K. Bryan, F. R. Ogborneiii, and M. e. Vellela. Reconstruction of cracks with unknown transmission condition from boundary data. Inverse Problems, 21:21-36, 2005.
    4. K. Bryan and M. Vogelius. A review of selected works on crack identification. IMA Volumes in Mathematics and its Applications, 135:25-46., 2004.
    5. A. Friedman and M. Vogelius Vogelius. Determining cracks by boundary measurments. Indiana.Univ.Math, 38:527-556, 1989.
    6. Bryan K and Vogelius M 1992 A uniqueness result concerning the identification of a collection of cracks from finitely many electrostatic boundary measurments SIAM J.MATH.Anal 23.
    7. Ben Abda A 1993 sur quelques problèmes inverses géométriques Thèse E.N.I.T.Tunis
    8. G. Alessandrini. Stability for the crack determination problem,. Inverse Problems in mathematical physics ed L Paivarinta and Sommersalo(Berlin: Springer), pages 1-8, 1993
    9. A. Ben Abda, H. Ben Ameur, and M. Jaoua. Identification of 2d cracks by elastic boundary measurements. Inverse Problems,, 15:67-77, 1999.
    10. F. Santosa and M. Vogelius. A computational algorithm to determine cracks from electrostatic boundary measurements. Int. J. Eng. Sci., 29:917-937, 1991.
    11. S. Andrieux and A. Ben Abda. Identification de fissures planes par une donnée au bord unique : un procédé direct de localisation d’identification. C.R. Acad. Sci., Paris Séri I, 315, 1992.
    12. S. Andrieux and A. Ben Abda. Identification of planar cracks by complete overdetermined data: inversion formulae. Inverse Problems, 12:553-563, 1996.
    13. Andrieux, S., Ben Abda, A., Bui, H.D.: Sur l’identification de fissures planes via le concept d’écart à la réciprocité en élasticité, C. R. Acad. Sci. Paris, 324 Série I, pp. 1431-1438, 1997.
    14. T. Bannour, A. Ben Abda, and M. Jaoua. A semi-explicit algorithm for the reconstruction of 3d planar cracks. Inverse Problems, 13:899-917, 1997.
  • Downloads

  • How to Cite

    Maher, B., Moncef, M., & Aabderrahmane, B. (2014). Line segment cracks identification via the reciprocity gap principle and Fourier transform. Global Journal of Mathematical Analysis, 2(4), 259-269. https://doi.org/10.14419/gjma.v2i4.3305

    Received date: 2014-08-02

    Accepted date: 2014-09-06

    Published date: 2014-09-10