Certain types of linear operators on probabilistic Hilbert space

 
 
 
  • Abstract
  • Keywords
  • References
  • PDF
  • Abstract


    The purpose of this paper is to introduce some definitions, properties and basic results that show the relation between F-bounded of linear operator in probabilistic Hilbert space and bounded operator in norm. In the paper, we prove that the adjoint operator in probabilistic Hilbert space is bounded. The notion of the continuous operators in probabilistic Hilbert space and some basic results are given. In addition, we note that every operator in probabilistic real Hilbert space is a self-adjoint Operator.


  • Keywords


    Bounded Operators; Linear Operators; Mathematical Expectation; Probabilistic Hilbert Space; Self-Adjoint Operator.

  • References


      [1] Al-Saady Ali D. and Mohammed Ali R (2014). Adjoint Operator in Probabilistic Hilbert Space, Mathematical Theory and Modeling, pp: 10-17.

      [2] Alsina, C.; Schweizer B.; and Sklar, A. (1993). On the Definition of Probabilistic Normed Space. Aequationes Mathematicae, pp: 91-98. http://dx.doi.org/10.1007/BF01834000.

      [3] Alsina, C.; Schweizer, B.; Sklar, A.; and Sempi. C. (1997). On the Definition of a Probabilistic Inner Product Space, Rendiconti di Matematica, Serie pp: 115-127.

      [4] Chang S., Cho Y., Kang M. S. (1994). Probabilistic Metric Spaces and Nonlinear Operators Theory, Sichuan university press.

      [5] El-Naschie, M. (1998). On the Uncertainty of Cantorian Geometry and Two-slit Experiment, Chaos, Solutions and Fractals, pp: 517-529.

      [6] El-Naschie, M. (2000). On the Unication of Heterotic Strings, M Theory and 1 Theory, Chaos, Solitons and Fractals, pp: 2397-2408. http://dx.doi.org/10.1016/S0960-0779(00)00108-9.

      [7] Guillen, B., Harikrishnam, P., (2014). Probabilistic Normed Spaces. London, Imperial College Press. http://dx.doi.org/10.1142/p944.

      [8] Guillen. B; Lallena J.; and Sempi. C, (1999). A study of Boundedness in Probabilistic Normed Spaces, Journal of mathematical Analysis and application, pp: 183–196. http://dx.doi.org/10.1006/jmaa.1998.6261.

      [9] Kreyszig, E. (1989). Introductory Functional Analysis with Applications, Wiley Classics Library Edition.

      [10] Menger, K. (1942). Statistical Metrics, Proceedings of the National Academy of Sciences, pp: 535-537. http://dx.doi.org/10.1073/pnas.28.12.535.

      [11] Rudin, W. (1991). Functional Analysis, McGraw-Hill Science.

      [12] Schweizer, B.; and Sklar, A. (1983). Probabilistic Metric Spaces, New York, Amsterdam, Oxford: North Holland.

      [13] Su, Y. (2001). On Definition of Probabilistic Inner Product Spaces, Acta Analysis Functionalis Applicate, pp: 193-196.

      [14] Su, Y.; Wang, X.; and GAO, J. (2007). Riesz Theorem in Probabilistic Inner Product Spaces, International Mathematical Forum, pp: 3073-3078.

      [15] Su, Y.; Wang, X.; and GAO, J. (2008). Approximation of Fixed Points for Nonlinear Operators in Probabilistic Inner Product Space. International Journal of Applied Mathematics, pp: 1-9.

      [16] T. Bag, S.K. Samanta. (2005). Fuzzy bounded linear operators, Fuzzy Sets and Systems pp: 513–547. http://dx.doi.org/10.1016/j.fss.2004.05.004.


 

View

Download

Article ID: 4664
 
DOI: 10.14419/gjma.v3i2.4664




Copyright © 2012-2015 Science Publishing Corporation Inc. All rights reserved.