Logarithmic gradient estimates to a Monge-Ampere Type equation on \(S^n\)
-
2015-07-16 https://doi.org/10.14419/gjma.v3i3.4904 -
Monge-Ampere equation, logarithmic, gradient estimate. -
Abstract
Monge-Ampere type equations arise naturally from many geometric problems. In this paper, we are concerned with one of these Monge-Ampere type equations on  dimensional sphere \(S^n\) and obtain logarithmic gradient estimate by using Bernstein technique.
-
References
[1] S.T. Yau, Harmonic functions on complete Riemannian manifolds, Comm. Pure. Appl. Math., 28(1975), pp.201--228.
[2] R. Schoen and S.-T. Yau, Lectures on differential geometry, nternational Press, Cambridge, MA, 1994.
[3] P.F. Guan, C.S. Lin, On equation (det(u_{ij} + delta_{ij}u) = u^p f) on (S^n)} , preprint No 2000-7, CTS in Tsing-Hua University, 2000.
[4] P.F. Guan, C.S. Lin and X.N. Ma, The Christoffel-Minkowski problem II:Weingarten Curvature Equations, Chinese Ann. Math. Ser. B 27, No. 6,(2006), pp.595--614.
[5] P.F.Guan and G.F.Wang, Local estimates for a class of fully nonlinear equations arising from conformal geometry. Int. Math. Res. Not., No.26,(2003), pp.1413--1432.
[6] S.-Y.S. Chen, Local estimates for some fully nonlinear elliptic equations, Int. Math. Res. Not., No. 55,(2005),pp.3403--3425.
[7] G.Huisken, C.Sinestrari, Convexity estimates for mean curvature flow and singularities of mean convex surfaces, Acta Math.,183 (1999), No. 1, pp.45--70.
[8] R. C. Reilly, On the Hessian of a function and the curvatures of its graph, Michigan Math. J., No.20,(1973), pp.373--383.
-
Downloads
-
How to Cite
Ye, Y. (2015). Logarithmic gradient estimates to a Monge-Ampere Type equation on \(S^n\). Global Journal of Mathematical Analysis, 3(3), 126-129. https://doi.org/10.14419/gjma.v3i3.4904Received date: 2015-06-09
Accepted date: 2015-07-08
Published date: 2015-07-16