An integral representation of the Catalan numbers

  • Authors

    • Xiao-Ting Shi Department of Mathematics, College of Science, Tianjin Polytechnic University, Tianjin City, 300387, China
    • Fang-Fang Liu Department of Mathematics, College of Science, Tianjin Polytechnic University, Tianjin City, 300387, China
    • Feng Qi Department of Mathematics, College of Science, Tianjin Polytechnic University, Tianjin City, 300387, China http://orcid.org/0000-0001-6239-2968
    2015-08-18
    https://doi.org/10.14419/gjma.v3i3.5055
  • Catalan Number, Integral Representation, Complete Monotonicity, Logarithmically Complete Monotonicity, Open Problem
  • Abstract

    In the paper, the authors establish an integral representation of the Catalan numbers, connect the Catalan numbers with the (logarithmically) complete monotonicity, and pose an open problem on the logarithmically complete monotonicity of a function involving ratio of gamma functions.

  • References

    1. [1] L. Comtet, Advanced Combinatorics: The Art of Finite and Infinite Expansions, Revised and Enlarged Edition, D. Reidel Publishing Co., Dordrecht and Boston, 1974.

      [2] R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics---A Foundation for Computer Science, 2nd ed., Addison-Wesley Publishing Company, Reading, MA, 1994.

      [3] A.-Q. Liu, G.-F. Li, B.-N. Guo, and F. Qi, Monotonicity and logarithmic concavity of two functions involving exponential function, Internat. J. Math. Ed. Sci. Tech. 39 (2008), no. 5, 686--691; Available online at http://dx.doi.org/10.1080/00207390801986841.

      [4] D. S. Mitrinović, J. E. PeÄarić, and A. M. Fink, Classical and New Inequalities in Analysis, Kluwer Academic Publishers, Dordrecht-Boston-London, 1993; Available online at http://dx.doi.org/10.1007/978-94-017-1043-5.

      [5] F. Qi, A logarithmically completely monotonic function involving the gamma function and originating from the Catalan numbers, ResearchGate Research, available online at http://dx.doi.org/10.13140/RG.2.1.1401.2009.

      [6] F. Qi, Bounds for the ratio of two gamma functions, J. Inequal. Appl. 2010 (2010), Article ID 493058, 84 pages; Available online at http://dx.doi.org/10.1155/2010/493058.

      [7] F. Qi, Bounds for the ratio of two gamma functions: from Gautschi's and Kershaw's inequalities to complete monotonicity, Turkish J. Anal. Number Theory 2 (2014), no. 5, 152--164; Available online at http://dx.doi.org/10.12691/tjant-2-5-1.

      [8] F. Qi and C.-P. Chen, A complete monotonicity property of the gamma function, J. Math. Anal. Appl. 296 (2004), 603--607; Available online at http://dx.doi.org/10.1016/j.jmaa.2004.04.026.

      [9] F. Qi and B.-N. Guo, Complete monotonicities of functions involving the gamma and digamma functions, RGMIA Res. Rep. Coll. 7 (2004), no. 1, Art. 8, 63--72; Available online at http://rgmia.org/v7n1.php.

      [10] F. Qi, S. Guo, and B.-N. Guo, Complete monotonicity of some functions involving polygamma functions, J. Comput. Appl. Math. 233 (2010), no. 9, 2149--2160; Available online at http://dx.doi.org/10.1016/j.cam.2009.09.044.

      [11] F. Qi and W.-H. Li, A logarithmically completely monotonic function involving the ratio of gamma functions, J. Appl. Anal. Comput. 5 (2015), no. 4, 626--634; Available online at http://dx.doi.org/10.11948/2015049.

      [12] F. Qi and Q.-M. Luo, Bounds for the ratio of two gamma functions---From Wendel's and related inequalities to logarithmically completely monotonic functions, Banach J. Math. Anal. 6 (2012), no. 2, 132--158.

      [13] F. Qi and Q.-M. Luo, Bounds for the ratio of two gamma functions: from Wendel's asymptotic relation to Elezović-Giordano-PeÄarić's theorem, J. Inequal. Appl. 2013, 2013:542, 20 pages; Available online at http://dx.doi.org/10.1186/1029-242X-2013-542.

      [14] F. Qi, Q.-M. Luo, and B.-N. Guo, Complete monotonicity of a function involving the divided difference of digamma functions, Sci. China Math. 56 (2013), no. 11, 2315--2325; Available online at http://dx.doi.org/10.1007/s11425-012-4562-0.

      [15] F. Qi, Q.-M. Luo, and B.-N. Guo, The function : Ratio's properties, In: Analytic Number Theory, Approximation Theory, and Special Functions, G. V. Milovanović and M. Th. Rassias (Eds), Springer, 2014, pp. 485--494; Available online at http://dx.doi.org/10.1007/978-1-4939-0258-3_16.

      [16] F. Qi, X.-T. Shi, and F.-F. Liu, An exponential representation for a function involving the gamma function and originating from the Catalan numbers, ResearchGate Research, available online at http://dx.doi.org/10.13140/RG.2.1.1086.4486.

      [17] F. Qi, X.-T. Shi, and F.-F. Liu, An integral representation, complete monotonicity, and inequalities of the Catalan numbers, ResearchGate Technical Report, available online at http://dx.doi.org/10.13140/RG.2.1.3230.1927.

      [18] F. Qi, X.-T. Shi, and F.-F. Liu, Several formulas for special values of the Bell polynomials of the second kind and applications, ResearchGate Technical Report, available online at http://dx.doi.org/10.13140/RG.2.1.3230.1927.

      [19] F. Qi, C.-F. Wei, and B.-N. Guo, Complete monotonicity of a function involving the ratio of gamma functions and applications, Banach J. Math. Anal. 6 (2012), no. 1, 35--44; Available online at http://dx.doi.org/10.15352/bjma/1337014663.

      [20] R. L. Schilling, R. Song, and Z. VondraÄek, Bernstein Functions---Theory and Applications, 2nd ed., de Gruyter Studies in Mathematics 37, Walter de Gruyter, Berlin, Germany, 2012; Available online at http://dx.doi.org/10.1515/9783110269338.

      [21] X.-T. Shi, F.-F. Liu, and F. Qi, An integral representation of the Catalan numbers, ResearchGate Research, available online at http://dx.doi.org/10.13140/RG.2.1.2273.6485.

      [22] R. Stanley and E. W. Weisstein, Catalan Number, From MathWorld--A Wolfram Web Resource; Available online at http://mathworld.wolfram.com/CatalanNumber.html.

      [23] N. M. Temme, Special Functions: An Introduction to Classical Functions of Mathematical Physics, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1996; Available online at http://dx.doi.org/10.1002/9781118032572.

      [24] D. V. Widder, The Laplace Transform, Princeton Mathematical Series, Volume 6, Princeton University Press, Princeton, N. J., 1941.

      [25] S.-Q. Zhang, B.-N. Guo, and F. Qi, A concise proof for properties of three functions involving the exponential function, Appl. Math. E-Notes 9 (2009), 177--183.

  • Downloads

    Additional Files

  • How to Cite

    Shi, X.-T., Liu, F.-F., & Qi, F. (2015). An integral representation of the Catalan numbers. Global Journal of Mathematical Analysis, 3(3), 130-133. https://doi.org/10.14419/gjma.v3i3.5055

    Received date: 2015-07-09

    Accepted date: 2015-08-16

    Published date: 2015-08-18