On inequalities of Hermite-Hadamard type for co-ordinated \((\alpha_1,m_1)\)-\((\alpha_2,m_2)\)-convex functions
-
2015-11-08 https://doi.org/10.14419/gjma.v3i4.5432 -
\((\alpha_1, m_1)\)-\((\alpha_2, m_2)\)-convex function, co-ordinates, rectangle of the plane, Hermite-Hadamard type inequality -
Abstract
In the paper, the authors establish some Hermite-Hadamard type integral inequalities for co-ordinated \((\alpha_1,m_1)\)-\((\alpha_2,m_2)\)-convex functions on a rectangle of the plane \(\mathbb{R}_0^2\). -
References
[1] S.-P. Bai and F. Qi, Some inequalities for (s1,m1)-(s2,m2) -convex functions on the co-ordinates, Glob. J. Math. Anal. 1 (2013), no. 1, 22--28; Available online at http://dx.doi.org/10.14419/gjma.v1i1.776.
[2] L. Chun, Some new inequalities of Hermite-Hadamard type for (α1,m1)-(α2,m2) -convex functions on co-ordinates, J. Function Spaces 2014 (2014), Article ID 975950, 7 pages; Available online at http://dx.doi.org/10.1155/2014/975950.
[3] S. S. Dragomir, On Hadamard's inequality for convex functions on the co-ordinates in a rectangle from the plane, Taiwanese J. Math. 5 (2001), no. 4, 775--788.
[4] S. S. Dragomir and C. E. M. Pearce, Selected Topics on Hermite-Hadamard Type Inequalities and Applications, RGMIA Monographs, Victoria University, 2000; Available online at http://rgmia.org/monographs/hermite_hadamard.html.
[5] S. S. Dragomir and G. Toader, Some inequalities for m-convex functions, Studia Univ. BabeÅŸ-Bolyai Math. 38 (1993), no. 1, 21--28.
[6] V. G. MiheÅŸan, A generalization of the convexity, Seminar on Functional Equations, Approx. Convex, Cluj-Napoca, 1993. (Romania)
[7] G. Toader, Some generalizations of the convexity, Proc. Colloq. Approx. Optim., Univ. Cluj-Napoca, Cluj-Napoca, 1985, 329--338.
[8] B.-Y. Xi, R.-F. Bai, and F. Qi, Hermite-Hadamard type inequalities for the m- and (α,m)-geometrically convex functions, Aequationes Math. 84 (2012), no. 3, 261--269; Available online at http://dx.doi.org/10.1007/s00010-011-0114-x.
[9] B.-Y. Xi and F. Qi, Some integral inequalities of Hermite-Hadamard type for convex functions with applications to means, J. Funct. Spaces Appl. 2012 (2012), Article ID 980438, 14 pages; Available online at http://dx.doi.org/10.1155/2012/980438.
-
Downloads
-
How to Cite
Bai, S.-P., Sun, J., & Qi, F. (2015). On inequalities of Hermite-Hadamard type for co-ordinated \((\alpha_1,m_1)\)-\((\alpha_2,m_2)\)-convex functions. Global Journal of Mathematical Analysis, 3(4), 145-149. https://doi.org/10.14419/gjma.v3i4.5432Received date: 2015-10-13
Accepted date: 2015-11-07
Published date: 2015-11-08