The soliton solution of a modified nonlinear schrödinger equation
-
2017-01-10 https://doi.org/10.14419/gjma.v5i1.7074 -
Nonlinear Schrödinger equation, Soliton solution, Bilinear derivative. -
Abstract
Hirota bilinear derivative method can be used to construct the soliton solutions for nonlinear equations. In this paper we construct the soliton solutions of a modified nonlinear Schrödinger equation by bilinear derivative method.
-
References
[1] Ablowitz M J, Clarkson P A. Solitons, Nonlinear Evolution Equations and Inverse Scattering. Cambridge: Cambridge University Press, 1999.
[2] R. Beals and R. R. Coifman, Scattering and inverse scattering for first order systems, Comm. pure. APPl. Math. 38(1985), 29-42.
[3] V. B. Matveev and M. A. Salle, Darboux transformation and solitons, Springer, Berlin, 1991.
[4] C. -H. Gu, H. -S. Hu and Z. -X. Zhou, Darboux Transformations in Soliton Theory and its Geometric Applications, Shanghai Science Technology Pubisher, Shanghai, 1991.
[5] Hirota R. Exact solution of the KdV equation formultiple collisions of solitons. Phys. Rev.. lett, 1971, 27:1192-1194.
[6] W. -M. Liang. Sotiary wave solutions for variant Boussinesq equations.Phys. Lett. A, 1995, 199(3-4): 169-172.
[7] L. -Y. Shen. Soliton and Integrable system. Shanghai: Shanghai Scientific and Technological Education Publishing House, 1999.
-
Downloads
-
How to Cite
Zhang, J., & Yin, L. (2017). The soliton solution of a modified nonlinear schrödinger equation. Global Journal of Mathematical Analysis, 5(1), 16-18. https://doi.org/10.14419/gjma.v5i1.7074Received date: 2016-12-09
Accepted date: 2017-01-01
Published date: 2017-01-10