On Properties of meromorphic solutions of difference Painlevé I and II equation

  • Authors

    • Weimin Xue Beiahng University
    • Yanmei Teng Beiahng University
    2017-06-10
    https://doi.org/10.14419/gjma.v5i2.7703
  • Difference, Divided Difference, Difference Painlevé Equations, Meromorphic Function
  • Abstract

    In this paper, we investigate some properties of finite order transcendental meromorphic solutions of difference Painlev \(\)\acute{e}\) I and II equations, and obtain precise estimations of exponents of convergence of poles of difference \(\)\Delta w(z)=w(z+1)-w(z)\) and divided difference \(\)\frac{\Delta w(z)}{w(z)}\), and of fixed points of \(\)w(z+\eta)$ ($\eta\in \mathbb{C}\setminus\{0\}\)).

  • References

    1. [1] A.Z. Mokhon'ko, ``On the Nevanlinna characteristics of some meromorphic functions, in `Theory of functions, functional analysis and their applicatins'", Izd-vo Khar'kovsk. Un-ta, 14(1971), 83-87.

      [2] I. Laine, Nevanlinna Theory and Complex Differential Equations, W. de Gruyter, Berlin, 1993.

      [3] I. Laine, C.C. Yang, ``Clunie theorems for difference and q-difference polynomials", J. Lond. Math. Soc, 76(2007), 556-566.

      [4] J. Heittokangas, R. Korhonen, I. Laine, J. Rieppo, J. Zhang, ``Value sharing results for shifts of meromorphic functions and sufficient conditions for periodicity", J. Math. Anal. Appl, 355(2009), 352-363.

      [5] J. Heittokangas, R. Korhonen, I. Laine, J. Rieppo, K. Hohge, ``Complex difference equations of Malmquist type", Comput. Methods. Funct. Theory, 1(2001), 27-39.

      [6] K. Ishizaki, N. Yanagihara, ``Wiman-Valiron method for difference equations", Nagoya Math. J, 175(2004), 75-102.

      [7] M.R. Chen, Z.X. Chen, ``On properties of finite order meromorphic solutions of a certain difference Painlevé I equation", Bull. Aust. Math. Soc, 85(2012), 463-475.

      [8] R.G. Halburd, R. Korhonen, ``Difference analogue of the lemma on the logarithmic derivative with applications to difference equations", J. Math. Anal. Appl, 314(2006), 477-487.

      [9] R.G. Halburd, R. Korhonen, ``Finite-order meromorphic solutions and the discrete Painlevé equations", Proc. Lond. Math. Soc, 94(2007), 443-474.

      [10] W.K. Hayman, Meromorphic Function, Clarendon Press, Oxford, 1964.

      [11] Y.M. Chiang, S.J. Feng, ``On the growth of logarithmic differences, difference quotients and logarthmic derivatives of meromorphic functions", Trans. Amer. Math. Soc, 361(2009), 3767-3791.

      [12] Y.M. Chiang, S.J. Feng, ``On the Nevanlinna characteristic of and difference equations in the complex plane", Ramanujan J, 16(2008), 105-129.

      [13] Z.X. Chen, K.H. Shon, ``Value distribution of meromorphic solutions of certain difference Painlevé equations", J. Math. Anal. Appl, 364(2010), 556-566.

      [14] Z.X. Chen, ``On properties of meromorphic solutions for some difference equations", Kodai Math. J, 34(2011), 244-256.

  • Downloads

  • How to Cite

    Xue, W., & Teng, Y. (2017). On Properties of meromorphic solutions of difference Painlevé I and II equation. Global Journal of Mathematical Analysis, 5(2), 37-42. https://doi.org/10.14419/gjma.v5i2.7703

    Received date: 2017-05-02

    Accepted date: 2017-06-05

    Published date: 2017-06-10