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Abstract 
 

Equatorial Plasma Bubbles (EPBs) are irregular plasma density depletions in the ambient electron density in the equatorial F-region ion-

osphere generated after sunset. EPBs are known to bring disruptions to telecommunication and navigation systems. This paper investi-

gates the occurrence of EPBs over Kisumu, Kenya (Geomagnetic coordinates: 9.64o S, 108.59o E; Geographic coordinates: 0.02o S, 34.6o 

E) for a few selected quiet and storm days between 1st January 2013 and 31st December 2014 which was a high Solar activity period for 

Solar Cycle 24. The study brings out EPB occurrence pattern over Kisumu, Kenya for the selected quiet and storm days of 2013 and 

2014. The Receiver Independent Exchange (RINEX) data was retrieved from the Kisumu high data-rate NovAtel GSV4004B SCINDA-

GPS receiver. The data was unzipped and processed to obtain Vertical Total Electron Content (VTEC), amplitude scintillation (S4) and 

Universal Time (UT) which were then fed into MATLAB to generate VTEC and S4 plots against UT for each selected quiet and storm 

day within the years 2013 and 2014. The Total Electron Content (TEC) depletion depths and S4 index values between 16:00 and 20:00 

UT for each selected quiet and storm day were extracted from the VTEC and S4 plots and used to plot TEC depletion depths and S4 plots. 

The Rate of Change of TEC (ROT) and Rate of Change of TEC Index (ROTI) between 16:00 and 20:00 UT were generated from VTEC 

and used to plot ROT and the corresponding ROTI plots against UT. TEC depletion depths and ROTI values for each selected quiet and 

storm day between 16:00 and 20:00 UT were extracted and used to plot TEC depletion depths and ROTI plots and S4 index and ROTI 

plots. In this study, the enhancement of S4 index corresponded well with TEC depletions, increased fluctuation of ROT and higher ROTI 

values between 16:00UT and 20:00UT for most days. This correspondence was used in inferring the occurrence of EPBs during the se-

lected quiet and storm days of the years 2013 and 2014. The obtained results showed that the highest EPB occurrence was during March 

equinox with 33.33% occurrence in the year 2013 and 30.76% occurrence in the year 2014, followed by the September equinox which 

had 20.38% occurrence in 2013 and 17.26% occurrence in 2014. The seasonal variation of EPB occurrence was attributed to the variation 

in the daytime E x B drift velocities. Larger E x B drift velocities resulted in increased EPB occurrence in the equinoctial period (March, 

April, August and September) and November solstice period (November and December) while lower E x B drift velocities resulted in 

reduced EPB occurrence in the June solstice period (June and July). The percentage EPB occurrence in the year 2013 was 6.49% while in 

the year 2014 was 4.32%. The storm period had percentage EPB occurrence of 21.42% in the year 2013 and 21.88% in the year 2014 

while the quiet period had percentage EPB occurrence of 18.75% in the year 2013 and 7.89% in the year 2014. These results clearly 

showed that the percentage EPB occurrence was higher during the storm period than in the quiet period. Hence the development of EPBs 

was enhanced by geomagnetic activity through several competing dynamics such as Prompt Penetration Electric Field (PPEF), Disturb-

ance Dynamo Electric Field (DDEF) and reduction in electron density due to increased recombination rates. 

 
Keywords: Equatorial Plasma Bubbles; Total Electron Content; Rate of Change of TEC; Rate of Change of TEC Index; Solar Cycle 24. 

1. Introduction 

The Sun produces highly energetic particles such as X-rays and Ultraviolet (UV) radiations (Milos, 2014) which are harmful to the living 

things and the environment. Increased solar activity leads to large release of Coronal Mass Ejections (CME) and solar flares which caus-

es a change in TEC when they reach the Earth. TEC is the total number of electrons in a column of 1m2 cross-section between a GPS 

satellite and a GPS receiver (Murkherjee et al., 2010; Adewale et al., 2012; Radicella, 2012; Ndeda & Odera, 2014; Magdaleno et al., 

2017). Changes in TEC causes heightened levels of hazards in the Earth-space environment, storms and disruptions, generation of strong 

electric currents in the atmosphere and changes in the reflective properties of the ionosphere. During the day, the F-layer splits into two 

layers: F1 layer which is about 170km and F2 layer which is about 250km altitude. Conversely, at night the F1 layer diminishes and 

leaves the F2 layer which persists through the night. Thus, the sporadic E-layer and D-layer disappears a few hours before midnight (Mi-

los, 2014) due to recombination between positive ions and electrons and migration of charged particles to higher altitudes. At the same 

time, the F-layer’s lower regions rapidly recombine than its upper regions leading to a situation known as the Rayleigh-Taylor Instability 

(RTI) (Kelley, 2009). RTI is an unstable condition where a heavy fluid is held on top of a lighter fluid (Adewale et al, 2012) leading to 

bubbles of low density plasma being formed and pushed upwards towards the upper denser part of the F- region and growing to form 
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bubbles which are ‘frozen’ into the moving ionosphere. These ‘frozen’ structures in the moving ionosphere are known as the plasma 

bubbles (Olwendo et al., 2012; Paznukhov et al., 2012). 

Ionospheric irregularities and scintillations pose serious threats to technological systems that increasingly rely on trans-ionospheric radio 

propagation (Adewale et al., 2012) through signal degradation. In low latitude regions, these irregularities which are basically plasma 

bubbles are characterized by TEC depletions. During the day, dynamo electric fields which are generated by thermospheric winds in the 

equatorial E- region are propagated to the F-region altitudes along magnetic field lines. These dynamo electric fields are usually eastward 

during the day and brings an increase in the upward E x B plasma drift (Omondi et al., 2014; Caruana et al., 2018) that diffuses down the 

magnetic field lines and moves away from the equator due to action of gravity and pressure gradient force. This upward E x B plasma 

drift results in formation of ionization peaks in the sub-tropics on both sides of the equator called the Equatorial Ionization Anomaly 

(EIA) (Olwendo et al., 2012; Ndeda & Odera, 2014). The EIA is an important feature in the study of ionospheric scintillations and is 

responsible for the formation of plasma density irregularities that give rise to stronger scintillations than at the magnetic equator (Das 

Gupta et al., 2004; Ndeda & Odera, 2014). Various studies have been done on the chemical and physical processes taking place in the 

ionosphere leading to the occurrences of EPBs using the GPS due its accurate consistent performance worldwide and in these studies, 

TEC has been the key parameter (Adewale et al., 2012; Fayose et al., 2012; Wang et al., 2018) that has been very useful in the mitigation 

of ionospheric effects on radio systems (Makela et al., 2004; Paznukhov et al., 2012; Adewale et al., 2012; Magdaleno et al., 2017; 

Adetayo et al., 2017; Eastwood et al., 2017; Barros et al., 2018). Makela et al., (2004) studied seasonal variation of EPB occurrence 

from Haleakala, Hawaii between January 2002 and August 2003 (near solar maximum) period using both Airglow and GPS data and a 

probability for EPB development was 45% in April and 83% in September. In a study of L-band scintillations and TEC carried out by 

Adewale et al., (2012) in a GPS station in Lagos, Nigeria, the results showed the presence of some large scale depletions of TEC (or 

plasma bubbles) during evening hours and the TEC depletions corresponded well with increased fluctuation of ROT. Paznukhov et al., 

(2012) carried out a study on equatorial plasma bubbles and L-band scintillations in Africa during solar minimum and their results 

showed increase in EPB rate during June solstice moving west to East. They observed that seasonal occurrence of EPBs tended to shift 

towards boreal summer with fewer occurrences in equinox seasons. Magdaleno et al., (2017) also used GPS data to study climatology 

characterization of EPBs between 1998-2008 using 67 international GNSS stations around geomagnetic Equator and the obtained results 

on spatial analysis of EPBs showed that the largest rate of EPBs occurred at the Equator and South American sector but decreased as the 

distance of magnetic equator increased. Barros et al., (2018) carried out a study on the characteristics of EPBs using ground based net-

work of more than 220 GNSS ground based receivers by mapping TEC (TEC maps) over South-America between November 2012 and 

January 2016 for both quiet and disturbed days. Their results showed that EPBs occurred majorly between September to March. Bolaji et 

al., (2019) also investigated the dynamics of ionospheric irregularities at different sectors in the month of March 2015 which consisted of 

both quiet and disturbed ionospheric conditions. The obtained results showed that the presence of severe irregularities were prominent in 

African and American sectors but rarer in Asian sectors. The strength was however found to decrease eastward and was attributed to the 

eastward decrease in the equatorial electrojet. In the equatorial region, the characteristics of plasma bubbles usually depend on the detec-

tion technique. In Ionosonde, plasma bubbles would manifest as Spread-F; in Airglow, they would manifest as plumes, while in GPS, 

they would manifest as TEC depletions. Although studies on the characterization and occurrence of plasma bubbles have been carried out 

in various parts of the equatorial region, more work needs to be done on the occurrence of EPBs over Africa even with the few available 

SCINDA-GPS receivers. The quiet time and storm time effects in the equatorial Africa needs more investigation due to the highly dy-

namic nature of the equatorial ionosphere (Omondi et al., 2019). In this paper we infer the occurrence of EPBs over Kisumu, Kenya us-

ing SCINDA-GPS TEC data for a few selected quiet and storm days between 1st January 2013 and 31st December 2014. The occurrence 

of EPBs was inferred using TEC depletion depths, S4 index, ROT fluctuation and ROTI. The results presented in this paper on the occur-

rence of EPBs are needed so as to relate the extent of ionospheric irregularities to the possible disruptions of High Frequency communi-

cation signals as implied by S4. This has important implications for navigation and communication sectors. 

2. Materials and methods 

The Zipped RINEX data archived in the SCINDA-GPS receiver between 1st January 2013 and 31st December 2014 was retrieved and 

unzipped using the WinRAR program. The unzipped scintillation (.scn) files and position of the receiver (.psn) files were created in one 

folder and dragged into an open Gopi Software (Developed by Boston college and Dr. Gopi Seemala) which processed the raw GPS data 

to obtain a text (.Cmn) output file which was a more simplified ten column daily file of ionospheric observables separated by a tab: 

Jdatet, Time, PRN, Az, Ele, Lat, Lon, Stec, Vtec, and S4.  

To reduce multipath effects resulting from obstruction from trees, tall buildings and other antennas, only data having elevation angles of 

40o and above was considered for use in this study. The filtered average daily data of VTEC, S4 and UT for all PRNs was obtained using 

SQL Server2017 program. The SQL Server2017 program produced the average daily VTEC and S4 values by averaging the VTEC and 

S4 values for all identical pseudo-random numbers (PRNs) within a 24-hour period.  

The selected quiet and storm days of 2013 and 2014 period of study were obtained from the disturbance storm time (Dst) index using 

data obtained from the link: www.wdc.kug.kyoto-ua.ac.jp/dstdir. The quiet days considered in this study were days having Dst values ˃-

25nT while storm days considered in this study were days having Dst values ≤ -50nT. The level of geomagnetic activity for the selected 

quiet and storm days was selected using the Planetary K (Kp) index obtained from the link: www.kugi.kyoto-ua.ac.jp/Kp, where the se-

lected quiet days had Kp values ranging between 0 and 2 while the selected storm days had Kp values ranging between 3 and 9. 

The VTEC and S4 plots for each selected quiet and storm days of 2013 and 2014 were plotted against UT using MATLAB. TEC deple-

tion depths and the corresponding S4 index for each selected quiet and storm day between 16:00 and 20:00UT were extracted and TEC 

depletion depths and S4 plots were plotted as indicated in Figures 1(a), 1(b), 1(c) and 1(d). TEC depletion depth was obtained by finding 

the difference between the TEC value at the time of TEC depletion and the TEC value at the time of a TEC enhancement. The corre-

spondence between TEC depletion depths and S4 for the selected quiet and storm days of the years 2013 and 2014 were noted and dis-

cussed. 

ROT was calculated directly from the filtered average daily VTEC data within intervals of 120 seconds using equation (1) (Pi et al., 

1997), 

 

t

TECTEC
ROT tt



−
= −1                                                                                                               (1) 
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                                              where,          TEC = Total Electron content 

                                                             t and t-1 = time difference between the epochs in minutes  

                                                                      ∆t = time range in minutes 

 

ROTI was computed from ROT at intervals of 4 minutes using equation 2. ROTI is the key component used to investigate ionospheric 

fluctuations (Bhattacharyya et al., 2000) and it provides spatial variation of electron density (Pi et al., 1997; Jacobsen, 2014). 

 

                                                               

22 ROTROTROTI −=                                                                                                                (2) 

 

ROT for each selected quiet and storm day and the corresponding ROTI were plotted against UT using MATLAB. The ROTI values for 

each selected quiet and storm day between 16:00 and 20:00 UT were extracted alongside their corresponding TEC depletion depths val-

ues. The extracted values were used to plot the TEC depletion depths and ROTI plots for the selected quiet and storm days of the years 

2013 and 2014 as indicated in Fig. 2(a), 2(b), 2(c) and 2(d). The correspondence between TEC depletion depths and ROTI for the select-

ed quiet and storm days of the years 2013 and 2014 were noted and discussed. The S4 values and their corresponding ROTI values for 

each selected quiet and storm days of 2013 and 2014 between 16:00 and 20:00 UT were also extracted and the obtained values used to 

plot the S4 and ROTI plots for the selected quiet and storm days of 2013 and 2014 as indicated Fig. 3(a), 3(b), 3(c) and 3(d). Their corre-

spondence were also noted and discussed. 

In this study, the presence of EPBs were inferred by checking for TEC depletions and their correspondence with enhanced S4,  fluctuation 

of ROT and ROTI values after sunset. Since not all TEC depletions leads to formation of EPBs, the threshold for TEC depletions were 

set at TEC depletion depths ≥7 TECU. The TEC depletion depths were to correspond with enhanced S4 index and increased fluctuations 

of ROT and high ROTI values ≥ 1.5 TECU/min after local sunset for each selected quiet and storm day. The TEC depletion depths and 

S4 index plots; TEC depletion depths and ROTI plots and S4 index and ROTI plots in Fig. 1(a), 1(b), 1(c), 1(d), 2(a), 2(b), 2(c), 2(d), 3(a), 

3(b), 3(c) and 3(d) were analyzed with an aim of obtaining the days which met the set threshold for EPB occurrence. 

3. Results and discussions 

3.1. Variations of TEC depletion depths and amplitude scintillations (S4) for selected quiet and storm days of 2013 

and 2014 

Fig. 1 shows TEC depletion depths and S4 plots for the selected quiet and storm days of 2013 and 2014 between 16:00 and 20:00 UT. 

In Fig. 1(a), a TEC depletion depth of 15 TECU was noted with a corresponding enhanced S4 index of 0.35 on 18th April 2013. 19th April 

2013 had a TEC depletion depth of 25 TECU with a corresponding enhanced S4 index of 0.5. 26th September 2013 had a TEC depletion 

depth of 16 TECU with a corresponding enhanced S4 index of 0.3 while 21st November 2013 had a TEC depletion depth of 11 TECU 

with a corresponding enhanced S4 index of 0.2. The largest TEC depletion depths of 25 TECU on 19th April 2013 and 16 TECU on 26th 

September 2013 were attributed to increased solar activity since the days were within the equinoctial period.  Increased solar activity 

leads to photoionization of neutral molecules through Solar Extreme Ultra-Violet (SEUV) radiation in the ionosphere. The smallest TEC 

depletion depths were on 26th June 2013, 4th July 2013 and 24th July 2013 and were attributed to low solar activity since the days were 

within the June solstice period. The TEC depletion depths were seen to correspond with enhanced S4 values of more than 0.2 after local 

sunset for most selected quiet days of 2013 as indicated by Fig. 1(a).  

In Fig. 1(b), TEC depletions depths of 20 TECU were noted with a corresponding enhanced S4 index of 0.5 and 0.3 on 16th April 2014 

and 26th August 2014 respectively. 3rd February 2014 had a TEC depletion depth of 15 TECU with a corresponding enhanced S4 index of 

0.3. 7th October 2014 had a TEC depletion depth of 16 TECU with a corresponding enhanced S4 index of 0.25 while 13th October 2014 

had a TEC depletion depth of 3 TECU with a corresponding enhanced S4 index of 0.2. The TEC depletion depths of 20 TECU were ob-

served on 16th April 2014 and 26th August 2014 were also attributed to increased solar activity during the said days. The TEC depletion 

depths were seen to correspond with enhanced S4 values of more than 0.1 after local sunset for most selected quiet days of 2014 as indi-

cated in Fig. 1(b).  

In Fig. 1(c), TEC depletion depths of 15 TECU were noted with a corresponding enhanced S4 index of 0.5 and 0.3 on 24th April 2013 and 

5th August 2013 respectively. 11th November 2014 had a TEC depletion depth of 16 TECU with a corresponding enhanced S4 index of 

0.2. 1st March 2013 had a TEC depletion depth of 5 TECU with a corresponding enhanced S4 index of 0.1 while 8th December 2013 had a 

TEC depletion depth of 10 TECU with a corresponding enhanced S4 index of 0.1. The largest TEC depletion depth of 16 TECU was on 

11th November 2014 and was attributed to the effect of an active storm (Dst index: -70nT) on that day. The TEC depletion depths of 15 

TECU on 24th April 2013 and 5th August 2013 were attributed to the effect of increased solar activity (equinoctial period). The TEC de-

pletion depths corresponded with enhanced S4 values of more than 0.1 for most selected storm days of 2013 after local sunset as indicated 

in Fig. 1(c). 

In Fig. 1(d), TEC depletions depths of 18 TECU were noted with a corresponding enhanced S4 index of about 0.3 and 0.2 on 4th March 

2014 and 4th May 2014 respectively. 12th April 2014 had a TEC depletion depth of 15 TECU with a corresponding enhanced S4 index of 

0.7. The S4 value of 0.7 on this day was the highest recorded S4 value for the whole study period. 12th April 2014 was a storm day having 

a Dst index value of -100 nT and a Solar flux F10.7 cm of about 150 sfu and hence this highest S4 value (0.7) might be due to the effect 

of high Solar intensity and the effect of the storm on that day. 12th September 2014 had a TEC depletion depth of 8 TECU with a corre-

sponding enhanced S4 index of 0.3 while 7th June 2014 had a TEC depletion depth of 3 TECU with a corresponding enhanced S4 index of 

0.2. Largest TEC depletion depths (18 TECU) observed on 1st March 2014 and 4th May 2014 were attributed to the increased solar activi-

ty during the period. The TEC depletion depths for the selected storm days of 2014 corresponded well with enhanced S4 values of more 

than 0.2 for most selected storm days of 2014 after local sunset as indicated in Fig. 1(d). 

Generally, the TEC depletion depths corresponded well with enhanced S4 values after local sunset for most selected quiet and storm days 

of the years 2013 and 2014 as indicated in Fig. 1(a), 1(b), 1(c) and 1(d). Higher  amplitude scintillation values  were seen for the selected 

days of March and April for both years. This is because, the eastward electric field during March and April was greater than for the other 

months. These variations of the eastward electric field was attributed to the zonal electric field in the equatorial ionosphere. It was also 

noted that the selected quiet days of the years 2013 and 2014 had larger TEC depletion depths than the selected storm days of the years 

2013 and 2014. This might be due to the variation in the ionospheric behaviour during quiet period and storm period. During storm 
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period, the ionospheric behaviour is controlled by several competing dynamics including the effect of PPEF, DDEF and a reduction in 

the electron density due to increased recombination rates. 

 

 

 
Fig. 1: TEC Depletion Depths and Amplitude Scintillation (S4) Plots for Selected Quiet and Storm Days of 2013 and 2014. 

 

3.2. Variations of TEC depletion depths and ROTI for selected quiet and storm days of 2013 and 2014  

Fig. 2 shows TEC depletion depths and ROTI plots for the selected quiet and storm days of the years 2013 and 2014 between 16:00 and 

20:00 UT. 

In Fig. 2(a), TEC depletion depth of 25 TECU was noted with a corresponding ROTI of 1.9 TECU/min on 19th April 2013. 10th May 

2013 had a TEC depletion depth of 16 TECU with a corresponding ROTI of 1.8 TECU/min. 26th March 2013 had a TEC depletion depth 

of 15 TECU with a corresponding enhanced S4 index of 1.9 TECU/min while 26th June 2013, 4th July 2013 and 24th June 2013 had TEC 

depletion depths of 5 TECU with a corresponding ROTI of 0 TECU/min.  

In Fig. 2(b), TEC depletion depths of 20 TECU were noted with a corresponding ROTI of about 1.8 TECU/min on 16th April 2014 and 

26th August 2014. 3rd February 2014 and 7th October 2014 had TEC depletion depths of 15 TECU with a corresponding ROTI of 1.8 

TECU/min. 16th January 2014, 13th October 2014, 26th November 2014 and 11th December 2014 had TEC depletion depths of 5 TECU, 3 

TECU, 5 TECU and 5 TECU respectively with a corresponding ROTI of 1.9 TECU/min. 

 

 
                                 Fig. 2: TEC Depletion Depths and ROTI Plots for Selected Quiet and Storm Days of 2013 and 2014. 
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In Fig. 2(c), TEC depletion depth of about 16 TECU was noted with a corresponding ROTI of 2.1 TECU/min on 11th November 2013. 

24th April 2013 had a TEC depletion depth of 15 TECU with a corresponding ROTI of 1.8 TECU/min. 5th August 2013 had a TEC deple-

tion depth of 13 TECU with a corresponding enhanced S4 index of 3.5 TECU/min while 1st June 2013, 6th July 2013 and 10th July 2013 

had TEC depletion depths of 4 TECU, 5 TECU and 3 TECU respectively with a corresponding ROTI of 0 TECU/min.  

In Fig. 2(d), TEC depletion of depletion depth of 18 TECU was noted with a corresponding ROTI of 3.4 TECU/min on 1st March 2014. 

4th May 2014 had a TEC depletion depth of 18 TECU with a corresponding ROTI of 2 TECU/min. 12th April 2014 had a TEC depletion 

depth of 15 TECU with a corresponding enhanced ROTI of 2.2 TECU/min while 7th June 2014 had TEC depletion depth of 3 TECU with 

a corresponding ROTI of 0 TECU/min. 

Increased TEC depletions lead to increased fluctuation of ROT and hence higher  ROTI values after sunset.  In this study, TEC depletion 

depths had a positive correspondence with ROTI where larger TEC depletion depths were seen to correspond with higher ROTI values 

after local sunset for most selected quiet and storm days of 2013 and 2014. This is in consistency with studies done by DasGupta et al., 

(2007) which showed that large TEC depletion depths resulted in larger ROTI values after sunset in both geomagnetically quiet and dis-

turbed conditions. The variation of TEC depletion depths and ROTI for the few selected quiet and storm days resulted from variation in 

development of the EIA and geomagnetic activity level. 

As much as the TEC depletion depths corresponded well with increase in ROTI after local sunset for most days as shown in Fig. 2(a), 

2(b), 2(c) and 2(d), there were a few days in which TEC depletion depths and ROTI didn’t exhibit a positive correspondence. The days 

included: 26th March 2013, 17th June 2013 and 21st November 2013 for the selected quiet days of 2013 as indicated in Fig. 2(a); 2nd May 

2014, 15th May 2014 and 26th November 2014 for selected quiet days of 2014 as indicated in Fig. 2(b); 2nd May 2013, 6th May 2013 and 

9th November 2013 for selected strom days of 2014 as indicated in Fig. 2(c) and on 19th February 2014 and 4th May 2014 for the selected 

storm days of 2014 as indicated in Fig. 2(d). The lack of positive correspondence of TEC depletion depths and ROTI values after sunset 

for these days was attributed to the presence of short-lived peaks on ROT which were smoothened (detrenched) before calculating and 

plotting ROTI. A study by Jacobsen, (2014) revealed that when comparing different statistical studies using ROTI, smoothening of the 

short-lived peaks on ROT is important in obtaining exact ROTI values.  

3.3. Variations of amplitude scintillation (S4) and ROTI for selected quiet and storm days of 2013 and 2014 

Fig. 3 shows TEC depletion depths and ROTI plots for the selected quiet and storm days of the years 2013 and 2014 between 16:00 and 

20:00 UT. 

In Fig. 3(a), the highest ROTI values for the selected quiet days of 2013 were 1.9 TECU/min on 26th March 2013 and 19th April 2013 

with a corresponding enhanced S4 index of 0.2 and 0.5 respectively. 10th May 2013, 17th June 2013, 26th September 2013 and 21st No-

vember 2013 had a ROTI value of 1.8 TECU/min with a corresponding enhanced S4 index of 0.35, 0.3, 0.35 and 0.2 respectively. The 

lowest ROTI values (0 TECU/min) were attained on 26th June 2013, 4th July 2013 and 24th July 2013 with corresponding enhanced S4 

values of 0.1, 0.15 and 0.3 respectively. 

In Fig. 3(b), the highest ROTI values for the selected quiet days of 2014 were 1.8 TECU/min on 3rd March 2014, 16th March 2014, 2nd 

May 2014, 13th May 2014, 26th August 2014 and 7th October 2014 with a corresponding enhanced S4 index of about 0.3, 0.5, 0.3, 0.2, 0.3 

and 0.25 respectively. Lowest ROTI values (0.2 TECU/min) were attained on 16th January 2014, 7th March 2014, 7th September 2014, 

13th October 2014, 26th November 2014 and 11th December 2014 with enhanced S4 index of about 0.1, 0.5, 0.3, 0.2, 0.2 and 0.2 respec-

tively. 

In Fig. 3(c), the highest ROTI value for the selected storm days of 2013 was 3.5 TECU/min on 9th November with a corresponding en-

hanced S4 of about 0.2. The lowest ROTI values (0 TECU/min) were attained on 1st June 2013, 6th July 2013 and 10th July 2013 with a 

corresponding enhanced S4 index of 0.1, 0.1 and 0.3 respectively. 

In Fig. 3(d), the highest ROTI values for the selected storm days of 2014 was 3.4 TECU/min on 1st March 2014, 4 with a corresponding 

enhanced S4 of about 0.3. Lowest ROTI values (0 TECU/min) was attained on 7th June 2014 with enhanced S4 of about 0.2.  

 

 
Fig. 3: Amplitude Scintillation (S4) and ROTI Plots for Selected Quiet and Storm Days of 2013 and 2014. 
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A close comparison of ROTI and S4 in Fig. 3(a), 3(b), 3(c) and 3(d), indicates that a rise in ROTI values which to some extend correlate 

with phase scintillation corresponded well with enhanced S4 index after local sunset for most of the selected quiet and storm days of the 

years 2013 and 2014. However, a few of the selected quiet and storm days of 2013 and 2014 did not show a direct correspondence be-

tween ROTI and the enhanced S4 values. This is because as much as amplitude scintillation index is able to show how disturbed the iono-

sphere is, in most cases the data used to compute ROTI does not cover the scale sizes required to make a complete comparison with S4 

index (Beach & Kintner, 1999). Jacobsen, (2014) observed that ROTI index is seen not to contain information about the irregularity size 

but it only provides information on the existence of the irregularities within the range limited by the sample rate and the measurement 

interval. This might be the reason why there was no direct correspondence between S4 and ROTI for some of the selected quiet and storm 

days of 2013 and 2014 in this study. 

3.4. Inferring occurrence of EPBs using TEC depletion, enhanced S4 index, ROT fluctuation and ROTI 

It should be noted from Fig. 1(a), 1(b), 1(c), 1(d), 2(a), 2(b), 2(c), 2(d), 3(a), 3(b), 3(c) and 3(d) that TEC depletion depths corresponded 

well with enhanced S4 index between 16:00 and 20:00UT for most selected quiet and storm days of 2013 and 2014. These TEC depletion 

depths also corresponded well with higher ROTI values between 16:00 and 20:00 UT for most selected quiet and storm days of 2013 and 

2014.  

The higher ROTI values between 16:00 UT and 20:00 UT resulted from electron density depletions in the ionosphere which a rise after 

sunset when the eastward electric field is enhanced, hence increasing the upward plasma drift to higher altitudes. Fejer et al., (1999) ob-

served that the evening vertical drift and pre-reversal enhancement (PRE) plays an important role in the occurrence of post-sunset plasma 

irregularities since the onset or inhibition of these post-sunset plasma instabilities is majorly controlled by the variability of the PRE. 

 In this study, the occurrence of EPBs were inferred for any selected quiet or storm day in which the enhancement of S4 corresponded 

well with TEC depletions of depletion depth ≥ 7 TECU, increased ROT fluctuations and higher ROTI values ≥ 1.5 TECU/min between 

16:00UT and 20:00UT (after local sunset). Hence for the selected quiet days of 2013, the presence of EPBs were inferred on 26 th March 

2013, 18th April 2013, 19th April 2013, 10th May 2013, 17th June 2013, 11th August 2013, 26th September 2013 and 21st November 2013. 

For selected the quiet days of 2014, the presence of EPBs were inferred on 3rd February 2014, 16th April 2014, 2nd May 2014, 13th May 

2014, 26th August 2014 and 7th October 2014. For the selected storm days of 2013, the presence of EPBs were inferred on 24th April 

2013, 1st May 2013, 5th August 2013, 9th November 2013 11th November 2013 and 8th December 2013. Lastly, for the selected storm 

days of 2014, the presence of EPBs were inferred on 19thApril 2014, 20th February 2014, 1st March 2014, 12th April 2014, 4th May 2014, 

28th August 2014 and 10th November 2014. Generally, correspondence of higher ROTI values, increased ROT fluctuation, sharp deple-

tions of TEC and enhanced S4 between 16:00 UT and 20:00 UT conform with earlier researches reported by Nishioka et al., (2008); Zou 

and Wang, (2009); Zernov et al., (2009) and Adewale et al., (2012) where TEC depletions, increased ROT fluctuations and higher ROTI 

values were used to characterize the occurrence of plasma bubbles.  

3.5. Yearly EPB occurrence for the years 2013 and 2014 

The EPB occurrence for the selected quiet and storm days of the years 2013 and 2014 were analyzed to obtain the percentage occurrence 

in both quiet and storm period for each year as shown in Fig. 4. These percentage occurrences for the years 2013 and 2014 were defined 

as a ratio of the number of days when EPBs were inferred and the total number of selected quiet and storm days under study.  

 

 
Fig. 4: Percentage EPB Occurrence for the Years 2013 and 2014. 

 

Fig. 4 shows a percentage EPB occurrence of 6.49% in the year 2013 and 4.32% in the year 2014. The percentage EPB occurrence in the 

storm period of the year 2013 was 21.42% while in the storm period of the year 2014 was 21.88%. The percentage EPB occurrence for 

the quiet period of the year 2013 was 18.75% while for the quiet period of the year 2014 was 7.89%. It was noted that the percentage of 

EPB occurrence was higher in the storm period than in the quiet period. These results conform with those from previous studies reported 

by Abdu et al, (2003); Kil and Paxton, (2006); Li et al., (2006) and Basu et al., (2007) where the occurrence of EPBs were found to be 

enhanced by geomagnetic activity. Nakata et al., (2018) observed that most EPBs occurred during high geomagnetic activity period since 

the PPEF which is enhanced during storms favors the occurrence of EPBs during such periods. When geomagnetic storms occur, the 

ionospheric electric fields at the polar (high latitude) region penetrate towards the low latitude (Nakata et al., 2018). This penetrating 

electric field called PPEF (Basu et al., 2007; Kikuchi et al., 2008) which is a short duration perturbation (taking a few hours) is eastward 

in the dusk ionosphere hence enhancing growth of RTI and causes development of plasma bubbles (Abdu et al., 2009; Cherniak et al., 

2019) due to increased E x B upward drift. In the recovery phase (Huang et al., 2001; Abdu et al, 2009; Bolaji et al., 2019), the direction 
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changes in opposite direction due to the development of a shielding current (Kelley et al., 1979; Kikuchi et al., 2008) which increases the 

opposite polarity of the electric field hence inhibiting the occurrence of EPBs. This electric field is called DDEF (Blanc & Richmond, 

1980; Bhattacharrya et al., 2019). Besides the effects of PPEF and DDEF, the occurrence of EPBs is also affected by storm winds which 

extend from high latitude regions to low latitude regions. Storm winds lift the ionized regions and modify the atmospheric composition 

of the equatorial ionosphere, hence affecting the EIA, PRE, VTEC and ROTI. The percentage occurrence of EPBs during storm days is 

therefore determined by the competing effects of PPEF, DDEF and the storm winds since the DDEF effect is usually delayed and lasts 

longer than PPEF (Richmond et al., 2003). During the quiet days, the interplanetary magnetic field (IMF) is northward and therefore the 

enhancement of the eastward electric field brings occurrence of EPBs (Cherniak et al., 2019).  It should also be noted that the occurrence 

of EPBs over Kisumu, Kenya during this period might have been strongly influenced by neutral winds dynamo which is driven by the E-

region neutral winds which are usually generated by convection and flow from West to East in the evening in Kenya (Mukabana & Piel-

ke, 1996) and leads to production of electric field enhancement (Omondi et al., 2014). Neutral winds are driven by pressure gradient of 

the neutral atmosphere as a result of solar heating (Otsuka, et al., 2006). 

3.6. Seasonal occurrences of EPBs for the years 2013 and 2014 

The seasonal occurrences of equatorial plasma bubbles for the years 2013 and 2014 were analyzed by classifying them into four seasons 

for each year where the March equinox comprised of months of March and April; June solstice comprised of months of June and July; 

September equinox comprised of months of August and September while the November solstice compromised of months of November 

and December. The results were represented as shown in Fig. 5. 

 

 
Fig. 5: Seasonal Variation of EPBs for the years 2013 and 2014. 

In Fig. 5, the percentage EPB occurrence for March equinox was 33.33% in the year 2013 and 30.76% in the year 2014. The percentage 

EPB occurrence for September equinox was 20.38% in the year 2013 and 17.26% in the year 2014. The percentage EPB occurrence for 

June solstice was 6.67% in the year 2013 and 7.69% in the year 2014. The percentage EPB occurrence for November solstice was 

30.76% in the year 2013 and 7.69% in the year 2014. It was noted that the percentage of EPB occurrence was higher during the equinoc-

tial period (March, April, August and September) than the solstice period (June, July, November and December) in the years 2013 and 

2014. This is because during equinoctial period, the solar terminator is aligned with the local geomagnetic field lines and hence there is 

increased photoionization resulting from high SEUV radiation during the period, leading to formation of irregularities. Studies by Sahai 

et al., (2000) and Huang et al., (2002) have shown that the percentage of EPB occurrence increases during periods of high solar activity. 

The  results obtained in this study conform with those obtained by Paznukhov et al., (2012) and Magdaleno et al., (2017) where highest 

occurrence of EPBs were observed during equinoctial months. The seasonal variation of EPB occurrence where equinoctial period had 

higher percentage EPB occurrence while solstice period had lower percentage EPB occurrence was attributed to the effect of the PRE of 

the eastward electric field which induces increase in vertical E x B drift (Abdu et al., 1981; Batista et al., 1996; Murkherjee et al., 2010). 

The equinoctial period (March, April, August and September) and the November solstice period (November and December) have larger 

daytime E x B drift velocities than the June solstice period (June and July). June solstice had the lowest percentage EPB occurrence and 

this was due to the lower E x B vertical drift during the June solstice resulting from reduced eastward electric field. These results con-

form with those obtained by Cherniak et al., (2019) where the lowest percentage of EPB occurrence was in June solstice. Fejer et al., 

(2008) showed that the vertical drift associated with PPEF is upward during daytime and downwards during nighttime in all seasons and 

they reach peak seasons during the June solstice. Consequently, the DDEF has a downward drift during daytime and an upward drift 

during nighttime and has been shown to increase with solar flux and are therefore largest during equinox and smallest in June solstice. 

4. Conclusions 

We have investigated the occurrence of EPBs over Kisumu, Kenya for a few selected quiet and storm days of 2013 and 2014 using TEC 

data obtained from SCINDA-GPS. The obtained results showed that TEC depletions and enhanced S4 index corresponded well with in-

creased ROT fluctuations and higher ROTI values between 16:00UT and 20:00UT for most selected quiet and storm days and was used 

as a proxy for inferring EPB occurrence. The storm period exhibited a higher percentage of EPB occurrences than the quiet period for the 

2013 and 2014 study period. The higher EPB occurrence during storm period was attributed to PPEF which favors development of EPBs 

during storm period by enhancing the eastward electric field which enhances the vertical E x B drift.  
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On the seasonal variation of EPBs, the results showed that the equinoctial period (March, April, August and September) had a higher 

percentage of EPB occurrence than the solstice period (June, July, November and December) for the years 2013 and 2014, which is in 

agreement with most ground-based observations. Furthermore, the asymmetry of EPB occurrence between equinoxes and between sol-

stices was also observed where the March equinox had a higher percentage EPB occurrence than the September equinox for both years 

while November solstice had a higher percentage EPB occurrence than the June solstice for the year 2013. However, the year 2014 

showed a similar solstice symmetry by having the same percentage EPB occurrence for June solstice and November solstice. Generally, 

the year to year percentage EPB occurrence showed a higher EPB occurrence in the year 2013 than in the year 2014.  

In conclusion, this study confirms the occurrence of EPBs over Kisumu, Kenya during both geomagnetically quiet and geomagnetically 

disturbed days for the years 2013 and 2014. 
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