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Abstract 
 

In this paper, the corrected Hawking temperature of (2+1) dimensional acoustic rotating black hole has been calculated by using tun-

neling method. For this purpose, the r-t sector of the metric is isolated from the angular part by taking a transformation of the time 

and the azimuthal angle co-ordinates in the exterior region of the event horizon. The massless particle of this black hole obeys the 

Klein- Gordon equation of motion. 

 
Keywords: Black Hole; Classical Theories of Gravity; Hawking Temperature; Hawking Radiation; Tunneling Method. 

 

1. Introduction 

The topic of black hole thermodynamics has been a subject of 

great interest since the 1970’s when Bekenstein (1973) first con-

jectured that there is a fundamental relationship between the prop-

erties of black holes and the laws of thermodynamics. Stephen 

Hawking strengthened this conjecture by showing that black holes 

can emit any kind of particles via thermal radiation, known as 

Hawking radiation, when quantum effects are taken into account 

(Hawking1975, Gibbons & Hawking 1977a, 1977b). It is shown 

that there is small but a finite probability for any kind of particles 

to tunnel through the barrier of the quantum vacuum and escape 

the black hole horizons as a real particle with positive energy, 

leaving the particles with negative energy inside the horizon of the 

black hole. Hawking radiation implies that black hole could slow-

ly evaporate emitting quantas and the rate of particle emission is 

as if the black hole were a hot body of temperature proportional to 

its surface gravity. This remarkable discovery leads to physical 

information about the classically forbidden region inside the hori-

zon. Recently, a semi-classical method of controlling Hawking 

radiation as a tunneling effect has been developed (Kraus & 

Wilczek 1995a, 1995b, Srinivasan & Padmanavan 1999, Parikh & 

Wilczek 2000, Shankaranarayanan et al. 2001, 2002, Kerner & 

Mann 2006, Banerjee & Modak 2009a, Mirza & Sherkatghanad 

2011). This is a particularly interesting method for calculating 

black hole temperature since it provides a dynamical model of the 

black hole radiation. In the tunneling approach, the particles are 

allowed to follow classically forbidden trajectories in a coordinate 

system which is well behaved at the horizon. This method in-

volves calculating the imaginary part of the action for the classi-

cally forbidden process of s-wave emission across the horizon, 

which in turn related to the Boltzmann factor for emission at the 

Hawking temperature. Using the WKB approximation, the tunnel-

ing probability for the classically forbidden trajectory of the s-

wave coming from inside to outside the event horizon is given 

byΓ∞e−2ImI ≈ e
−E

TH ,
⁄

where I is the classical action of the trajectory 

and E is the energy of the tunneling particles. To calculate the 

imaginary part  

 

of the action for the emitted particles, the complex path method, 

also known as Hamilton- Jacobi method is used frequently. This 

method was first proposed by K. Srinivasan & T. Padmanavan 

(1999) and subsequently developed by many authors. The Hamil-

ton-Jacobi methods involve consideration of an emitted scalar 

particle, ignoring its self-gravitation and assume that its action 

satisfies the relativistic Hamilton- Jacobi equation. The method is 

motivated by applying the WKB approximation to the Klein-

Gordon equation. Related research has shown that the black hole 

tunneling method can be successfully applied to variety of dynam-

ical black holes. This method has acquired a growing interest and 

has been used by many authors to find out the Hawking tempera-

ture for different black holes and for more complicated space-

times. Recently, Shankarnarayanan et al. (2002) obtained the cor-

rected temperature associated with the Hawking radiation in dif-

ferent coordinate systems by applying the Hamilton-Jacobi meth-

od for the Schwarzschild space time. Angheben et al. (2005) ap-

plied Hamilton-Jacobi equation and WKB approximation to deal 

with the tunneling for extremal and rotating black hole. Criscienzo 

et al. (2007) analyzed the instability against emission of massless 

particles by the trapping horizon of an evolving black hole with 

the use of the Hamilton-Jacobi method. Jiang et al. (2009) per-

formed an analysis of Hawking radiation about apparent horizon 

in a FRW universe in which the Hawking radiation of a black hole 

is treated as the quantum tunneling by Hamilton-Jacobi method 

beyond semi-classical approximation. Considering the contribu-

tion of both the outer and inner horizons Bo and Wen-Biao (2010) 

have applied the Hamilton-Jacobi method to a Kerr-Newman 

black hole and obtained a negative temperature of the inner hori-

zon. Mirza and Sherkatghanad (2011) studied the AdS rotating 

black hole for the BHT massive gravity in three dimensions. They 

have calculated the corrected entropy of the rotating black hole 

solution of the new massive gravity using tunneling method and 

Cardy formula. Mahanta and Misra (2013a, 2013b) have calculat-

ed the corrected Hawking temperature for the Warped AdS3 rotat-

ing black hole and (2+1) dimensional BTZ rotating black hole by 

using tunneling method. Several other aspects of this method have 

also been discussed extensively by many authors (Arzano et al. 
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2005, Medved & Vagenas 2005, Akhmedov et al. 2006, Modak 

2009, Banerjee & Modak 2009b). 

Although several decades have passed, the phenomenon of Hawk-

ing radiation is yet to be observed experimentally compared with 

the difficulties on the astrophysical side. Recently analog models 

of general relativity have received great attention as these models 

are shedding light on possible experimental verifications of some 

fundamental problems in black hole physics such as the evapora-

tion of black hole and semi-classical quantities. Unruh (1981) first 

proposed the idea of using acoustic geometry on the use of super-

sonic acoustic flows as an analogy to gravitating systems. The 

basis of the analogy between gravitational black hole and acoustic 

black hole comes from the possibility of experimental observation 

of the acoustic analog of Hawking radiation from regions of flow 

of inviscid and barotropic fluids behaving as outer trapped surfac-

es viz. acoustic event horizons. As discussed by Unruh (1995) and 

subsequently by many authors, an acoustic event horizon will emit 

Hawking radiation in the form of a thermal bath of phonons at a 

temperature TH =
ℏgH

2πC
 , gHbeing the normalizer to have the dimen-

sions of a physical acceleration. The equation of motion for the 

acoustic disturbance is identical to the Klein- Gordon equation for 

a massless scalar field minimally coupled to gravity in a curved 

space time (Visser 1998). Visser showed how to define the er-

gosphere, trapped regions, acoustic apparent horizon and acoustic 

event horizon for a supersonic fluid flow with a sink at the origin. 

With Visser’s works (Visser 1993, 1998, 1999, Novello et al. 

2002, Barcelo et al. 2005) acoustic black hole has received an 

exponentially growing attention in the field of research. Many 

black hole issues have already been treated as field theoretical 

problems in fluid because the acoustic analogue of a rotating black 

hole is found to be useful in studying various aspects of black hole 

physics. Berti et al. (2004) computed the reflection coefficients of 

the super radiant scattering displayed by the ergoregion of (2+1) 

dimensional acoustic black hole. Lepe and Saavedra (2005) pre-

sented an exact expression for the quasinormal modes of acoustic 

disturbances in a rotating (2+1) dimensional sonic black hole 

(draining bathtub fluid flow) in the low frequency limit. Berti 

(2005) have evaluated the classical wave propagation in a rotating 

acoustic (2+1) dimensional black hole. Kim et al. (2006) studied 

the “draining bathtub” as an acoustic analogue of a three-

dimensional rotating black hole. Bercelo et al. (2006) discussed 

the issue of quasi-particle production by analogue black holes with 

particular attention to the possibility of reproducing Hawking 

radiation in a laboratory. Carusotto et al. (2008) reported numeri-

cal evidence of Hawking emission of Bogoliubov phonons from a 

sonic horizon in a flowing one-dimensional atomic Bose-Einstein 

condensate. Kim et al. (2008) studied thermodynamic quantities of 

an acoustic black hole and its thermodynamic stability in a cavity 

based on the generalized uncertainty principle and found that the 

acoustic black hole can decay into the remnant or the large black 

hole. Recently Lombardo et al. (2012) studied the process of 

decoherence in acoustic black holes. Lemos (2013) considered the 

(2+1)-dimensional draining bathtub metric and studied its quasi 

normal modes, its superresonance features, its instabilities when 

surrounding it by a mirror and the possibility of turning it into a 

sonic bomb or a power plant. Many fluid systems have also been 

investigated on a variety of analogue models of acoustic black 

holes, including gravity wave, electromagnetic wave etc. In the 

context of what has been stated above, it will be logical and rele-

vant to calculate the corrected Hawking temperature of acoustic 

rotating black hole by tunneling method via Hamilton-Jacobi an-

satz. For this purpose, however, we have to isolate the r-t sector of 

the metric from the angular rotating part by taking a suitable trans-

formation of co-ordinates.  

In our work, we have calculated the corrected Hawking tempera-

ture of (2+1) dimensional acoustic rotating black hole by tunnel-

ing method. The paper is organized as follows. In Sec. 2 we con-

sider the (2+1) dimensional acoustic rotating black hole model. In 

Sec. 3 the correction to the semi-classical Hawking temperature is 

obtained for this metric. We conclude the paper with a brief dis-

cussion in Sec. 4. 

2.  (2+1) Dimensional acoustic rotating black 

hole model 

For the (2+1) dimensional acoustic rotating black hole, we consid-

er the acoustic metric of the so called ‘draining bathtub’ fluid flow 

with a sink at the origin first introduced by Visser (1998)  

 

ds2 = − (C2 −
A2 + B2

r2 ) dt2 −
2A

r
drdt − 

 

2Bdφdt + dr2 + r2dφ2                                                               (1) 

 

Where t is the time coordinate. The acoustic horizon is located at 

 

rH =  
A

C
 

 

And the ergosphere forms at 

 

rE =
√A2 + B2

C
 

 

WhereC is the speed of sound? 

Writing the metric (1) in the form  

 

ds2 = −C2dt2 + (dr −
A

r
dt)

2
+ (rdφ −

B

r
dt)

2
                        (2) 

 

And then taking the transformations of the time and the azimuthal 

angle coordinates in the exterior region of A C⁄ < 𝑟 <∝(Basak and 

Majumdar 2003), namely 

 

dt → dt +
Ar

r2C2 − A2 dr dφ → dφ +
AB

r(r2C2 − A2)
dr 

 

The metric (2) can be rewritten in the form 

 

ds2 = −N2(r)dt2 +
1

N2(r)
dr2 + r2(dφ − Ω0dt)2                      (3) 

 

Where 

 

N2(r) = 1 −
A2

C2r2
=

r2 − rH
2

r2
 

 

And 

 

Ω0(r) =
B

Cr2 = ΩH

rH
2

r2  

 

The metric (3) looks similar to that of the rotating BTZ black hole 

(Banados et al. 1992), but it has a difference with the lapse func-

tion N(r). 

 

HereN2(r) = 1 −
A2

C2r2 =
r2−rH

2

r2  

 

Whereas 

 

NBTZ
2 (r) =

(r2 − r+
2 )(r2 − r−

2 )

r2l2  

 

Where l2 =
−1

Λ
 

Moreover the acoustic black hole is asymptotically flat while the 

BTZ black hole has asymptotically anti-de-sitter space time. 

The massless particle of the equation (3) obeys the Klein- Gordon 

equation of motion 

 

−
ђ2

√−g
∂μ[gμν√−g ∂νφ] = 0                                                        (4) 
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3. Correction to the semi-classical Hawking temperature  

To solve the equation of motion (4) with the help of background 

metric (3), we can write the standard WKB (Wenzel-Kramers-

Brillouin) ansatz for φ as  

 

φ(r, t) = exp [−
i

ђ
s(r, t)]                                                             (5) 

 

Putting the value of φfrom the equation (5) we can calculate (4) 

as,  

 

−
ђ

√−g

∂

∂μ
[gμν√−g

∂

∂ν
e

−
i

ђ
S
] = 0 

 

⇨
∂

∂r
[grr√−g

∂

∂r
e

−
i

ђ
S
] +

∂

∂t
[gtt√−g

∂

∂t
e

−
i

ђ
S
] = 0 

 

⇨
∂

∂r
[−N2(r)

∂

∂r
e

−
i

ђ
S
] +

∂

∂t
[

1

N2(r)

∂

∂t
e

−
i

ђ
S

]  = 0 

 

⇨
∂

∂r
[−N2(r) (

−i

ђ
) e

−
i

ђ
S ∂S

∂r
] +

∂

∂t
[

1

N2(r)
(

−i

ђ
) e

−
i

ђ
S ∂S

∂t
] = 0 

 

⇨ −N2(r) (
−i

ђ
) e

−
i

ђ
S

(
∂S

∂r
)

2

+ N2(r)e
−

i

ђ
S ∂2S

∂r2
+

∂

∂r
(N2(r))e

−
i

ђ
S ∂S

∂r

+
1

N2(r)
(

−i

ђ
) e

−
i

ђ
S

(
∂S

∂t
)

2

+
1

N2(r)
e

−
i

ђ
S ∂2S

∂t2

= 0 

 

⇨ −N2(r) (
−i

ђ
) (

∂S

∂r
)

2

− N2(r)
∂2S

∂r2 −
∂

∂r
(N2(r))

∂S

∂r

+
1

N2(r)
(

−i

ђ
) (

∂S

∂t
)

2

+
1

N2(r)

∂2S

∂t2 = 0 

 

⇨
1

N2(r)
(

∂S

∂t
)

2

− N2(r) (
∂S

∂r
)

2

−
ђ

i

1

N2(r)

∂2S

∂t2
+

ђ

i
N2(r)

∂2S

∂r2
+ 

 
ђ

i

∂

∂r
N2(r)

∂S

∂r
= 0                                                                           (6) 

 

Here S(r, t) can be expanded in the power of ђ as 

 

S(r, t) = S0(r, t) + ∑ ђiSi(r, t)i                                                     (7) 

 

For i=1, (7) becomes 

 

S = S0 + ђ0S0 + ђ1S1                                             (8) 

 

Putting (8) in (6) we get, 

 

1

𝑁2(𝑟)
(

𝜕

𝜕𝑡
(𝑆0 + ђ0𝑆0 + ђ1𝑆1))

2

− 𝑁2(𝑟) (
𝜕

𝜕𝑟
(𝑆0 + ђ0𝑆0 +

ђ1𝑆1))
2

−
ђ

𝑖

1

𝑁2(𝑟)

𝜕2

𝜕𝑡2
(𝑆0 + ђ0𝑆0 + ђ1𝑆1) +

ђ

𝑖
𝑁2(𝑟)

𝜕2

𝜕𝑟2
(𝑆0 +

ђ0𝑆0 + ђ1𝑆1) +
ђ

𝑖

𝜕

𝜕𝑟
𝑁2(𝑟)

𝜕

𝜕𝑟
(𝑆0 + ђ0𝑆0 + ђ1𝑆1) = 0    (9) 

 

Neglecting the coefficient of ђ we get, 

 

−𝑁2(𝑟) [
𝜕𝑆0

𝜕𝑟
+ ђ0

𝜕𝑆0

𝜕𝑟
+ ђ1

𝜕𝑆1

𝜕𝑟
]

2

+
1

𝑁2(𝑟)
[
𝜕𝑆0

𝜕𝑡
+ ђ0

𝜕𝑆0

𝜕𝑡
+ ђ1

𝜕𝑆1

𝜕𝑡
]

2

= 0 

 

⇨ (𝑁2(𝑟))
2

[
𝜕𝑆0

𝜕𝑟
+ ђ0

𝜕𝑆0

𝜕𝑟
+ ђ1

𝜕𝑆1

𝜕𝑟
]

2

= [
𝜕𝑆0

𝜕𝑡
+ ђ0

𝜕𝑆0

𝜕𝑡
+ ђ1

𝜕𝑆1

𝜕𝑡
]

2

 

⇨
𝜕𝑆0

𝜕𝑡
+ ђ0

𝜕𝑆0

𝜕𝑡
+ ђ1

𝜕𝑆1

𝜕𝑡
= ±𝑁2(𝑟) (

𝜕𝑆0

𝜕𝑟
+ ђ0

𝜕𝑆0

𝜕𝑟
+ ђ1

𝜕𝑆1

𝜕𝑟
) 

 

Equating the coefficient of ђ0, ђ1 respectively we get, 
𝜕𝑆0

𝜕𝑡
= ±𝑁2(𝑟)

𝜕𝑆0

𝜕𝑟
                                                                   (10.1) 

 
𝜕𝑆1

𝜕𝑡
= ±𝑁2(𝑟)

𝜕𝑆1

𝜕𝑟
                                                                    (10.2) 

Similarly, 

 
𝜕𝑆2

𝜕𝑡
= ±𝑁2(𝑟)

𝜕𝑆2

𝜕𝑟
                                                                    (10.3) 

 

And so on. 

All the equations obtained above are identical and so their solu-

tions are also related to each other. We assume that any 𝑆𝑖(𝑟, 𝑡)can 

differ from 𝑆0(𝑟, 𝑡)by a proportionality factorso that we may write 

 

𝑆(𝑟, 𝑡) = (1 + ∑ ђ𝑖𝛾𝑖𝑖 )𝑆0(𝑟, 𝑡)                                         (11) 

 

The dimension of 𝛾𝑖 is equal to the dimension of ђ−𝑖 . Thus 

the𝛾i’scan be expressed in terms of the dimensionless constant. In 

(2+1) dimensions we can choose𝐺 = 𝐶 = 𝜅𝛽 =
1

4𝜋𝜖0
= 1 and √ђ 

can be replaced by plank length (𝑙𝑝). The length parameters for 

these black holes is 𝑟𝐻. So we have, 

 

𝑆(𝑟, 𝑡) = (1 + ∑
𝛽𝑖ђ𝑖

𝐻𝑎𝑐
𝑖𝑖 ) 𝑆0(𝑟, 𝑡)                                 (12) 

 

Where𝛽𝑖 ’s are dimensionless constantsand 𝐻𝑎𝑐 = 𝑎1𝑟𝐻
2, 𝑎1 being 

an arbitrary constant (Banerjee and Modak 2009b). Isolating the 

semi classical action for the r-t sector near the horizon, we obtain 

 

𝑆0(𝑟, 𝑡) = 𝜔𝑡 + 𝑆0̅(𝑟)                                              (13) 

 

Where the total energy of the tunneling particle near the horizon 

approximation is given by 

 

𝜔 = 𝐸 − 𝐽𝛺+                                                            (14) 

 

Now from (10.1) and (13) we get, 

 
𝜕

𝜕𝑡
[𝜔𝑡 + 𝑆0̅(𝑟)] = ±𝑁2(𝑟)

𝜕

𝜕𝑟
[𝜔𝑡 + 𝑆0̅(𝑟)] 

 

⇨ 𝜔 = ±𝑁2(𝑟)
𝜕𝑆0̅

𝜕𝑟
 

 

⇨
𝜕𝑆0̅

𝜕𝑟
= ±

𝜔

𝑁2(𝑟)
 

 

⇨ 𝜕𝑆0̅ = ±
𝜔

𝑁2(𝑟)
𝜕𝑟 

 

Integrating we get, 

 

𝑆0̅ = ±𝜔 ∫
𝑑𝑟

𝑁2(𝑟)
                                                              (15) 

 

Here + (-) sign shows that the particle is ingoing (outgoing) the 

event horizon. As a result substituting 𝑆0(𝑟, 𝑡) and 𝑆0̅ in (12) we 

get, 

 

𝑆(𝑟, 𝑡) = (1 + ∑
𝛽𝑖ђ𝑖

𝐻𝑎𝑐
𝑖𝑖 ) (𝜔𝑡 ± 𝜔 ∫

𝑑𝑟

𝑁2(𝑟)
)                        (16) 

 

A solution for the scalar field in the presence of the higher order 

correction to the semi classical action is given by  

 

𝜑𝑖𝑛 = 𝑒𝑥𝑝 [−
𝑖

ђ
(1 + ∑

𝛽𝑖ђ𝑖

𝐻𝑎𝑐
𝑖𝑖 ) (𝜔𝑡 + 𝜔 ∫

𝑑𝑟

𝑁2(𝑟)
)]                        (17) 
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𝜑𝑜𝑢𝑡 = 𝑒𝑥𝑝 [−
𝑖

ђ
(1 + ∑

𝛽𝑖ђ𝑖

𝐻𝑎𝑐
𝑖𝑖 ) (𝜔𝑡 − 𝜔 ∫

𝑑𝑟

𝑁2(𝑟)
)]                      (18) 

 

Where ingoing and outgoing particles cross the event horizon on 

different paths.  

Now, for the tunneling of a particle across the event horizon, the 

nature of the co-ordinates of r and t change. The time-like co-

ordinate t outside the event horizon changes to the space-time co-

ordinate inside the event horizon and likewise for the outside 

space-time co-ordinate r. Since the metric coefficients for the r-t 

sector change sign at the two sides of the event horizon, the out-

going particle cannot cross the event horizon classically. There-

fore, the path on which the tunneling takes place has an imaginary 

time coordinate (𝐼𝑚t). We can thus write the ingoing and outgoing 

probabilities as, 

 

𝑝𝑖𝑛 = |𝜑𝑖𝑛|2 = 𝑒𝑥𝑝 [
2

ђ
(1 + ∑

𝛽𝑖ђ𝑖

𝐻𝑎𝑐
𝑖𝑖 ) (𝜔𝐼𝑚𝑡 + 𝜔𝐼𝑚 ∫

𝑑𝑟

𝑁2(𝑟)
)]    (19) 

 

𝑝𝑜𝑢𝑡 = |𝜑𝑜𝑢𝑡|2 = 𝑒𝑥𝑝 [
2

ђ
(1 + ∑

𝛽𝑖ђ𝑖

𝐻𝑎𝑐
𝑖𝑖 ) (𝜔𝐼𝑚𝑡 − 𝜔𝐼𝑚 ∫

𝑑𝑟

𝑁2(𝑟)
)](20) 

 

In the classical limit, the ingoing particle probability is unity; 

therefore we have, from (19) 

 

𝐼𝑚𝑡 = −𝐼𝑚 ∫
𝑑𝑟

N2(r)
          (21) 

 

Now, pout can be expressed as, 

 

pout = exp [
−4

ђ
ω (1 + ∑

βiђ
i

Hac
ii ) Im ∫

dr

N2(r)
]      (22) 

 

Identifying the temperature of this black hole by using the Princi-

ple of “detailed balance” (Srinivasan and Padmanavan 1999; 

Shankaranarayanan et al. 2001, 2002) for the ingoing and out-

going probabilities 

 
pout

pin
= exp (−

ω

T
)         (23) 

 

Or 

 

pout = exp (−
ω

T
)         (24) 

 

We obtain the corrected Hawking temperature as, 

 

T = TH (1 + ∑
βiђ

i

Hac
ii )

−1

        (25) 

 

Where, TH  is the semi classical Hawking temperature and other 

terms are corrections to the higher order quantum effect. 

4. Conclusion 

In this paper, we have used tunneling method to calculate the cor-

rected Hawking temperature for the (2+1) dimensional acoustic 

rotating black hole. For this purpose r-t, sector is isolated through 

a transformation of the time and the azimuthal angle co-ordinates 

in the exterior region of the event horizon. The massless particle 

of this black hole obeys the Klein-Gordon equation of motion. 

Considering the ingoing particle probability to be unity, it is found 

that the corrected Hawking temperature contains the semi-

classical Hawking temperature and a factor giving the corrections 

to the higher-order quantum effect. 
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