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Abstract 
 

This paper deals with the existence of non-collinear equilibria in restricted three-body problem when less massive primary is an oblate 

spheroid and the potential of oblate spheroid is in terms of largest root of confocal oblate spheroid. This is found that the non-collinear 

equilibria are the solution of the equations r1 = n-2/3 and κ = 1 – a2, where r1 is the distance of the infinitesimal mass from more massive 

primary, n is mean-motion of primaries, a is semi axis of oblate spheroid and κ is the largest root of the equation of confocal oblate sphe-

roid passes through the infinitesimal mass. 
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1. Introduction 

The restricted problem of three-body describes the motion of in-

finitesimal mass moving in the gravitational field of two massive 

primaries in the same plane or out of plane called two dimensional 

or three dimensional problem accordingly. The primaries are re-

volving around their center of mass either in circular or elliptical 

orbits under the influence of their mutual gravitational attraction. 

If the orbit of the primaries around their center of mass is elliptic, 

problem is said to be elliptic restricted three-body problem 

(ER3BP or ERTBP) and if the orbit of the primaries around their 

center of mass is circular, problem is said to be circular restricted 

three-body problem or restricted three-body problem, denoted by 

CR3BP or CRTBP or RTBP or R3BP.  

The problem possesses five equilibrium points out of which three 

are collinear and two non-collinear. The collinear libration points 

are unstable while non-collinear are stable for the mass ratio μ ≤ 

0.038520896505 [3].Some studies related to the equilibrium 

points in R3BP or ER3BP, taken into account the oblateness and 

triaxiality of the primaries, Coriolis and Centrifugal forces, varia-

tion of the masses of the primaries and the infinitesimal mass etc. 

are discussed by Danby [2]; Szebehely [3]; Vidyakin [4]; Sharma 

[5]; Subbarao and Sharma [6]; Sharma et.al. [7]; Choudhary R. K. 

[8]; Cid R. et. al. [10]; El-Shaboury [11]; Bhatnagar et al. [12]; 

Selaru D. et.al. [13]; Markellos et al. [14]; Subbarao and Sharma 

[15]; Khanna and Bhatnagar [16, 17]; Roberts G.E. [18]; Oberti 

and Vienne [19]; Sosnytskyi [20]; Perdiou et. al. [21]; Arredondo 

et.al. [22]; Idrisi and Taqvi [23]; Idrisi [24]; Idrisi and Amjad [25]. 

In 1958, W. D. MacMillan [1] gave a theory to find out the poten-

tial of ellipsoid in terms of largest root of confocal ellipsoid. Let a, 

b, c be the semi-axes of the given oblate spheroid such that a = b 

> c, (x, y, z) the co-ordinates of the external point P and a´, b´, c´ 

(a´ = b´ > c´) be the semi-axes of the confocal oblate spheroid 

passes through P.  

Let the equation of the oblate spheroid be 
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where ξ, η, ζ are the principal axes of the oblate spheroid. 

The equation of the confocal oblate spheroid whose semi-axes are 

a´, b´ and c´ and passes through the point P(x, y, z) is 
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Since the oblate spheroids are confocal, we have a´2 = a2 + κ,     

b´2 = b2 + κ and c´2= c2 + κ. Therefore, the Equation (2) becomes  
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The potential of the oblate spheroid with axes a and c and density 

σ at an external point P(x, y, z) in terms of κ is given by (MacMil-

lan [1]) 
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where κ is defined in the Eqn. (3). 

The aim of this paper is to find out non-collinear equilibria in 

restricted three-body problem when less massive primary is an 

oblate spheroid, using the potential in terms of κ (Eqn. 4) and also 

verify the results with previous studies such as [6] and [9].  
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2. Equations of motion 

Let m2 be an oblate spheroid whose axes are a, b and c (a = b > c) 

and m1 a point mass (m1 > m2), are moving in the circular orbits 

around their center of mass O. An infinitesimal mass m3 is moving 

in the plane of motion of m1 and m2. The distances of m3 from m1, 

m2 and O are r1, r2 and r respectively. The principal axes of sphe-

roid remains parallel to the synodic axes Oxyz throughout the mo-

tion and the equatorial plane of m2 is coincide with the plane of 

motion of m1 and m2. Let the line joining m1 and m2 be taken as X 

–axis and O their center of mass as origin. Let the line passing 

through O and perpendicular to OX and lying in the plane of mo-

tion m1 and m2   be the Y –axis. Let us consider a synodic system 

of co-ordinates Oxyz initially coincide with the inertial system 

OXYZ , rotating with angular velocity  about Z –axis (the z –axis 

is coincide with Z –axis). We wish to find the equations of motion 

of m3 using the terminology of Szebehely (1967) in the synodic 

co-ordinate system and dimensionless variables i.e. the distance 

between the primaries is unity, the unit of  time t is such that the 

gravitational constant G = 1 and the sum of the masses of the pri-

maries is unity i.e. m1 + m2 = 1.  

 

 
Fig. 1: The configuration of the R3BP when m2 is an oblate spheroid 

 

The potential of the oblate spheroid m2 at P(x, y) in our case is 

therefore given by, 
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where κ is defined by the Eqn. 
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and 
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The equations of the motion of m3 in the synodic co-ordinate sys-

tem and dimensionless variables are:  

 

 

m3[
2r /t2 + 2× r /t +  /t × r +  × ( × r)] = F = F1 + F2                                                                                                  

(7) 

where 

r = x i + y j, 

  = n k, 

F = Total force acting on m3 = F1 + F2, 

F1 = Gravitational force exerted on m3 due to m1, 

F2 = Gravitational force exerted on m3 due to m2. 

 

We first calculate the L.H.S. of the Equation (8) in the Cartesian 

form as follows: 

r /t = x i + y j, 

Relative acceleration = 2r /t2 = x i + y j, 

 × r  = − n y i + n x j, 

Coriolis acceleration =  × r /t = − n y i + n x j, 

Centrifugal acceleration =  × ( × r) = −n2(x i + y j), 

 /t = 0, 

Euler’s acceleration =  /t × r = 0. 

 

Thus, the L.H.S. of the Equation (7) becomes 

m3[( x i + y j) – 2 n ( y i − x j) − n2(x i + y j)] 

 

Now, we calculate the R.H.S. of the Equation (8) as follows: 

 

Let the gravitational potential of m1 and m2 at m3 be V1 and V2 

respectively, therefore 
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Gravitational force exerted on m3 due to m1 and m2 is given by 

F1 = − (V1 /x i + V1 /y j), 

F2 = − (V2 /x i + V2 /y j). 

 

Thus, the Equation (7) becomes 

m3[( x i + y j) – 2 n ( y i − x j) − n2(x i + y j)] = − (V1 /x  + 

V2 /x) i − (V1 /y  + V2 /y) j   

i. e.  
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and 
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where n is the mean-motion of the primaries. 
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Now, we define a function Ω such that  
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where V is defined in the Eqn. (5). 

Hence, the Eqns. (8) and (9) become 
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where Ωx and Ωy are the partial derivatives of Ω with respect to x 

and y respectively. 

The integral analogous to Jacobi integral is 
2 2( ) 2 .x y C                                                                  (13)                                                           

3. Calculation of the mean-motion n of the 

primaries 

Since the primaries m1 and m2 are moving in the circular orbits 

around their center of mass O. Therefore, the mean-motion n of 

the primaries is given by,  
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F
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where F is the gravitational force acting on m1 due to m2.  

From Eqn. (6), the value of the largest root κ at m1 (µ, 0, 0) is       

κ = 1 – a2. 

Thus, the mean-motion n of the primaries is  
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In terms of infinite series, mean-motion of the primaries is given 

by 
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Let A = (a2 – c2) / 5 <<1 be the oblateness factor, therefore 

 

2 2 3 43 45 25 525
1 ...

2 56 48 1408
n A A A A       

 

On neglecting the second and higher powers in A, we have 
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The results are agreed with [6]. For A = 0, the results are in con-

formity of the classical case of the restricted three-body problem 

[3]. From Fig. 2, as oblateness factor A increases, the mean-

motion of the primaries also increases. 

 

 
Fig. 2: A versus n 

4. Non-collinear equilibrium solution 

The non-collinear equilibria are the solution of the equations Ωx = 

0 and Ωy = 0, y ≠ 0 i.e. 
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and 
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On eliminating the last terms from the Eqns. (15) and (16), we 

have 
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Again, on eliminating r1 from Eqns. (15) and (16), we now get 
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On simplifying Eqn. (18) and considering only linear terms in a2 – 

c2, we have 
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Since A = (a2 – c2) / 5 <<1, therefore considering only linear terms 

in A, we get 
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Obviously, a2 + κ = 1, is the solution of Eqn. (19). Thus, the non-

collinear equilibria are the solution of the Eqns. r1 = n–2/3 and        

κ =  1 – a2 iff r2 = 1 (Eqn. 6).  

 

Hence, the coordinates of non-collinear equilibria L4,5 are 
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Thus, there exist two non-collinear equilibria L4,5 defined in Eqns. 

(20) and (21). The results are totally agree with [6] and [9]. Also, 

these points are linearly stable for critical mass parameter µc = µo 

– 0.285001787791 A, where µo = 0.038520896505 [6]. 

5. Conclusion 

In the present paper the existence of non-collinear equilibria in 

restricted three-body problem considering less massive primary an 

oblate spheroid has been discussed when potential is given in 

terms of κ, the largest root of confocal spheroid passes through at 

an external point P(x, y, z) given by W. D. MacMillan, 1958. The 

mean-motion of the primaries obtained is in conformity with [6] 

and [9]. Also, at non-collinear equilibria, the results are in agree-

ment with [6] and [9] 
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