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Abstract 
 

The present paper studies the linear stability of the triangular equilibrium points of the system. The system comprises of a radiating pri-

mary and a triaxial secondary in elliptic restricted three body problem. The existence of third order resonances has been shown and the 

linear stability has been analyzed for these resonance cases. For the resonance case, 3𝜆2 = 1 and  2𝜆1 + 𝜆2 = 0, the conditions of the 

linear stability are satisfied and the system is stable. But, for the resonance cases 2𝜆1 + 𝜆2 = 1 and  𝜆1 − 2𝜆2 = 2 the system is un-

stable. 
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1. Introduction 

The elliptic restricted three body problem has been widely studied 

by many researchers which is a generalization of classical model. 

The system consists of two finite bodies (known as primaries) 

moving about their common center of mass, having no influence 

on each other. The third body is influenced by both of the prima-

ries. The primaries in general describe elliptic path. The orbit of 

Jupiter around Sun is a fixed ellipse and the Trojan asteroids are 

influenced by the gravitational attraction of the Sun and Jupiter is 

an example of the above system. The study of restricted/elliptic 

restricted three body problem has been a subject of investigation 

over the years. The stability of such systems (ER3BP) moving in 

an elliptic orbits was subject of investigation and was investigated 

by many authors , Arnold [1] ; Danby [11]; Bennet [4]; Szebehely 

[25]; Broucke [6]; Katsiaris [19] ; Beauge[5]; Baoyin[3]; Am-

mar[2]; Biggs [7]; Biggs [8] and  many others. 

 The resonance/non-resonance cases of libration points for re-

stricted/elliptic restricted three body problem was studied and 

analyzed by many authors Kamel [18]; Choudhry [10]; Ferraz 

[12]; Henrard [15]; Kumar [20]; Henrard [17], Hadjidemetriou 

[13]; Hadjidemetriou [14]; Subba Rao [24]; Thakur [26]; Beauge 

[5]; Chandra [9]; Narayan [22] and many others. 

 In the present paper an attempt have been made to study and ana-

lyze the linear stability of the system. It has been shown that reso-

nances of the third order exist under the range of linear stability. 

This paper is in continuation of the paper ( Usha [27] and Narayan 

[23]). The study of linear stability in presence of resonance makes 

the work different from the other works. We have followed the 

method proposed by Kumar [20]. 

 The present paper is organized as follows: Section 1, which is 

introduction; Section 2 provides the equations of motion; Section 

3 gives the location of the Triangular points; Section 4 focuses on 

the First order stability and Normalization of Hamiltonian and 

Section 5 gives the Resonance Cases. The discussions and conclu-

sions are drawn in Section 6. 

2. Equations of motion 

The equations of motion of the infinitesimal mass in the elliptic 

restricted three body problem under radiating and triaxial prima-

ries in the barycentric, pulsating and rotating, non-dimensional 

coordinates are given by the differential equations derived in Usha 

et. al.  [27] and given in the following equation (1). The notations 

in principle follow the book of Szebehely [25], with some minor 

modifications in the notation being done for adapting to the pre-

sent problem,  presented as: 
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2 2 2 2 2 2

1 2r =(x+ ) +y , r =(x-1+ ) +y 
                                          (3) 

 

Here 1m  and 2m are the masses of the bigger and smaller prima-

ries positioned at ( ix  ,0), i= 1, 2; q=1-δ, the radiation pressure; 

1  and 2  are triaxiality parameters, i  (i=1,2)(McCuskey 

[21]); and a, b, c are semi axes and R is the distance between the 

primaries ; ir  (i=1,2) are the distances of the infinitesimal mass 

from the bigger and smaller primaries respectively; while e is the 

eccentricity of the either primary around the other and v is the  

true anomaly. 

3. Location of triangular equilibrium points 

The equilibrium points of the system are given by the equations: 
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where Ω is given by equation (2). 
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Solving the above equations, the coordinates of the triangular 

libration points 𝐿4,5 are represented as: 
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4. First order stability and normalization of 

Hamiltonian 

The Lagrangian equation of motion of the problem is written as: 
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Now, to get the Hamiltonian function of the problem, using the 

formula: 
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Hence, the perturbed Hamiltonian is given by: 
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(10) 

 

where 𝑃𝑥  and 𝑃𝑦 are the generalized components of momentum. 

The nature of motion near the two points will be the same as the 

two triangular equilibrium solutions are symmetrical to each other. 

Hence, in further calculations the motion near the equilibrium 

point 𝐿4will be considered.  

So, shifting  the origin to 𝐿4 by the change of variables given by: 
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So, the point 𝐿4 is given by: 
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The solution of the equation (12) in the new variables are given by 

the equilibrium position: 
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Now, expanding the Hamiltonian function (10) in the powers of 

iP  and iq , i=1,2, we obtain: 
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where 0H =constant and 1 0H  . 

Taking only 2H , as we are analyzing the linear stability, we have: 
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The above equation can be written as: 
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and, 

 

                (17) 

For normalizing using the canonical transformation: 
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and, 
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where, i=1, 2 and A, B, C are given by the equation (17). Here, 
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On solving the above equation, we have: 
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If 
2
1,2  are purely imaginary, we have: 
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The equality relation corresponds to resonance cases with equal 

frequencies, which are not considered in the study. 

Now, the transformation (19) reduces the Hamiltonian as: 
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Where, 1 2( , )   , 1 2( , )    and such that 
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The coefficients a are given as: 
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Now, using the transformation: 
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The Hamiltonian gets transformed as: 
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where, a is given as : 
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Now, introducing the complex conjugate variables given by: 
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The coefficients in 2H   are such that a a  
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Next, to reduce the Hamiltonian (30) to normal form in complex 

conjugate variables given as: 
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s are 2π periodic functions of v. The relation between the varia-

bles are given as: 
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Using the above relation, we have the equation: 
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Now, expanding the Hamiltonian using Taylor’s theorem, and 

equating the equal powers on both sides: 
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Taking the terms up to second order in e: 
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From which we get the relation: 
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Solving, the above equation, we have: 
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By virtue of periodicity of 
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complex-valued generating function S correct upto O[e]. 

Finally, reducing the Hamiltonian 
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which can be written using Implicit function theorem as: 
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Now, using equation (33), up to first order terms in e, we have the 

relation: 

 

**
**

**

S
q qj j

p j


  


, 

**
**

**

S
p pj j

q j


  


                                        

(47)

 
 

where,  ** (1) ** **
, ,S S q p v . Now, using the relations: 

 

,

** * * ** * *
,

q p iq p p iqj j j j j j

q p iq p p iqj j j j j j

    

   
 

 

Let 
(1)S W , so from equation(46) we have: 

 

1 1* *
,

* *2 2

W W
q q p pj j j j

i ip qj j

 
   

 
                               (48) 

 

From, equations (46) and (48), we have: 
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Thus, the Hamiltonian 2H has been transformed to normal form 

given by equation (44), correct up to first order in eccentricity e. 

This is obtained using equations (19), (25) and (46) and the corre-

sponding coefficients of the generating function K are given by 

(50). 

5. Resonance cases 

For the study of stability, we have to examine the presence of 

resonances. For this, taking third order terms and applying the 
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Now, using equation (43) along with the condition of periodicity 

of 
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Now, let the value of µ giving the resonance be: 
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Taking,  (0) 2 (2)
i i e     , i=1,2 and expanding by Tay-

lor’s theorem, 
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The value of 
(2)  is calculated on putting the value 

(0) 

calculated from equation (54) and substituting different values of 

1k , 2k , N in the above equation, the values of third order reso-

nances are calculated.  
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Let us consider, the third order resonance occur for: 

 

23 1   ; 1 22 0   ; 1 22 1   ; 1 22 2   .        (56) 

 

Calculating the values of 
(0)  and 

(2) at 0e   for different 

resonance cases and plotting the graphs we can analyze the stabil-

ity of the system. The graphs have been plotted using MATLAB 

and the calculations have been verified using the software Mathe-

matica. 

6. Conclusion 

The resonance cases and the linear stability of the elliptic restrict-

ed three body problem with radiating primary and triaxial second-

ary has been analyzed. It is observed from the graphs that the line-

ar stability is satisfied for the resonance cases 23 1   and 

1 22 0  
 
(Figures1 & 2). On the other hand, the condition of 

linear stability does not hold for the resonance cases 

1 22 2    and 1 22 1   which are clear from the graphs 

(Figures 3 & 4). These results are in confirmation with Kumar 

[20]. 

 

 

 
Fig. 1: Analysis of Stability For 23 1  

.
 

 

 

Fig. 2: Analysis of Stability for 1 22 0   . 

 

 

Fig. 3: Analysis of Stability for 1 22 1   . 
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Fig. 4: Analysis of Stability for 1 22 2  
. 
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