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Abstract 
 

Sharma’s singularity-free analytical theory for the short-term orbital motion of satellites in terms of KS elements in closed form in eccen-

tricity with Earth’s zonal harmonic term J2, is improved by using King-Hele’s expression for the radial distance ‘r’ which includes the 

effect of J2, and is suitable for low eccentricity orbits. Numerical experimentation with four test cases with perigee altitude of 200 km and 

eccentricity varying from 0.01 to 0.3 for different inclinations is carried out. It is found that the orbital elements computed with the ana-

lytical expressions in a single step during half a revolution match very well with numerically integrated values and show significant im-

provement over the earlier theory. The solution can be effectively used for computation of mean elements for near-Earth orbits, where 

the short-term orbit perturbations due to J2 play most important role. The theory will be very useful in computing the state vectors during 

the coast phase of rocket trajectories and flight algorithms for on-board implementation. 
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1. Introduction 

The development of analytical theories for the motion of an Earth 

satellite under the influence of Earth’s oblateness, viz. the second 

zonal harmonic J2, draws great attention due to the non-

integrability of the main problem in the artificial satellite theory 

and it may also induce chaotic motion under certain conditions 

[4]. Brouwer [3] and Kozai [9] made significant contributions on 

the study of J2 perturbed satellite motion, among several theories 

that emerged in the past. Lyddane [12] re-worked Brouwer’s theo-

ry to improve the solution for small eccentricities and inclinations. 

Garfinkel [7] and Aksnes [1] employed the use of intermediary 

orbit to obtain a solution in terms of Delaunay’s variables. 

Deprit’s Radial Intermediary [5] is a particular canonical trans-

formation theory of Lie type to remove the parallactic factors by 

the elimination of parallax, which was utilized to produce a viable 

alternative for the onboard orbit propagators [8]. 

The classical Newtonian equations, being unstable, are not very 

ideal choice for numerical integration as well as for development 

of analytical theories. Regularization of the classical Newtonian 

equations by Kustaanheimo and Stiefel[11] and presented in 

details in Stiefel and Scheifele [15], drew significant attention 

when J2 perturbed Lambert-type solutions in terms of KS 

(Kustaanheimo-Stiefel) transformation was derived in closed-form 

by Andrus [2] and Engels & Junkins [6]. Sharma [13] obtained a 

singularity-free analytical solution for short-term orbit computa-

tion in terms KS elements with J2, in series expanded up to fourth 

power in eccentricity. He revisited the problem and provided an 

accurate theory by analytical integration in closed form in eccen-

tricity for short-term orbit prediction [14]. The equations are regu-

lar everywhere and the generalized eccentric anomaly is the inde-

pendent variable. The elegant feature of KS element equations is 

the existence of symmetry which allows for solving only one out 

of the eight equations, which improves the efficiency in terms of 

memory usage and computation time. 

In spite of the good accuracy of Sharma’s closed form solution, 

some avenue for further improvement is available. The radial dis-

tance ‘r’, appearing in the denominator of the equations of motion, 

was assumed by Sharma to be unperturbed, i.e., r = a(1- e cos E), 

where a, e and E are semi-major, eccentricity and eccentric anom-

aly, respectively. However, it needs to be function of J2. In the 

present study, we have modified the above theory by using King-

Hele’s [10] expression for the radial distance ‘r’ which includes 

the effect of J2. It is derived for low eccentricity orbits. Numerical 

experimentation brings out that the orbital elements computed 

from the new analytical theory in a single step during half a revo-

lution show significant improvement over the earlier theory. 

2. Equations of motion 

The KS element equations in terms of four-vectors α, β with 

Earth’s zonal harmonic term J2 are [14]: 

 
dαi

dE
=

µJ2R2

8w2  [
1

r3 {q0i
+ q1i

cos E + q2i
sin E} +

3

r4 {g0k
+

g1k
cos E + g2k

cos2 E + g3k 
sin E + g4k

cos E sin E} −
6

r5 {f0i
+ f1i

cos E + f2i
cos2 E + f3i

cos3 E + f4i
sin E +

f5i
sin E cos E + f6i

sin E cos2 E}] (1)  

 

where 

 

 q0i
= βi  q1i

= −βi q2i
= αi  

 

where 

 

k = i + 2, gpj+4
= gpj

 (j = 1,2 ; p = 0,1,2,3,4)  

 

g0k
= a0q0k

+ a2q2k 
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g1k

= a1q0k
+ a0q1k 

   

g2k
= a1q1k

− a2q2k 
                                                                   (2) 

 

 g3k
= a2q0k

+ a0q2k 
   

 

g4k
= a1q2k

+ a2q1k 
  

 

f0i
= b0q0i

+ b3q2i
 

 

f1i
= b1q0i

+ b0q1i
+ b4q2i

   

 

f2i
= b2q0i

+ b1q1i
− b3q2i

   

 

 f3i
= b2q1i

− b4q2i 
                                                                      (3) 

 

 f4i
= b3q0i

+ b0q2i
   

 

 f5i
= b4q0i

+ b3q1i
+ b1q2i

   

 

 f6i
= b4q1i

+ b2q2i
   

 

a0 = α1α3 + α2α4 + β1β3 + β2β4   
 

a1 = α1α3 + α2α4 − β1β3 − β2β4   
 

a2 = α1β3 + α2β4 + β1α3 + β2α4   
 

b0 = a0
2 + a2 

2  b1 = 2a0a1   
 

b2 = a1
2 − a2 

2  b3 = 2a0a2  b4 = 2a1a2  

 

 x3  = a0 + a1 cos E + a2 sin E                                                    (4) 

 

  x3
2 = b0 + b1 cos E + b2 cos2 E + b3 sin E + b4 sin E cos E. (5) 

 

If αi is changed to βi in equation (1), we substitute 

 

 q0i
= αi  q1i

= αi q2i
= βi  

 

for initial conditions. 

3. Expression for radial distance ‘r’ with J2 

Restricting up to J2 term, the radial distance r is given by [10]: 

 

 
1

r
= L [ 1 + e cos θ +

3

2
 J2V∗]                                                      (6) 

 

where 

 

  V∗ = L2R2  [
2−5 sin2 i

2
−

sin2 i

6
cos(2θ + 2ω)]                            (7) 

 

 L =
1

a(1−e2)
  

 

(1 + e cos θ) =
1−e2

1−e cos E
 , 

 

where θ, i and ω are true anomaly, inclination and argument of 

perigee, respectively. 

The initial value of V* is equal to V* at θ minus V* at θ = 0o, i.e. 

 

  V∗ = −
L2R2 

3
 [sin2 i sin2 ω  − (

z

r
)

2
],                                          (8) 

 

 (
z

r
) = sin i sin(θ + ω).                                                                (9) 

 

Substituting the value of V* from Equation (8) and (9) into Equa-

tion (6) and using binomial theorem and retaining terms up to J2, 

we get  

 
1

r3 = L3(1 + e cos θ)3 [ 1 −
3J2L2R2 

2(1−e2)
(1 − e cos E) {sin2 i sin2 ω  −

(
z

r
)

2
 }]                                                                                         (10) 

 
1

r4 = L4(1 + e cos θ)4 [ 1 −
2J2L2R2 

(1−e2)
(1 − e cos E) {sin2 i sin2 ω  −

(
z

r
)

2
 }]                                                                                         (11) 

 
1

r5 = L5(1 + e cos θ)5 [ 1 −
5J2L2R2 

2(1−e2)
(1 − e cos E) {sin2 i sin2 ω  −

(
z

r
)

2
 }]                                                                                         (12) 

 

Substituting Equations (10), (11) and (12) in Equation (1) and 

simplifying considerably, we get 

 

∆αi =
µJ2R2

8w2a3
 [ q0i

Λ3
00 + q1i

Λ3
10 + q2i

Λ3
01  −

3J2R2 

2(1−e2)3a2 {A(q0i
Λ2

00 + q1i
Λ2

10 + q2i
Λ2

01) −

(f0i
Λ4

00+f1i
Λ4

10+f2i
Λ4

20+f3i
Λ4

30+f4i
Λ4

01+f5i
Λ4

11+f6i
Λ4

21)

a2
 } +

3

a
 { {g0k

Λ4
00 +

g1k
Λ4

10 + g2k
Λ4

20 + g3k
Λ4

01 + g4k
Λ4

11} +
2J2R2 

(1−e2)3a2 ( A{g0k
Λ3

00 +

g1k
Λ3

10 + g2k
Λ3

20 + g3k
Λ3

01 + g4k
Λ3

11} −

(h0i
Λ5

00+h1i
Λ5

10+h2i
Λ5

20+h3i
Λ5

30+h4Λ5
40+h5i

Λ5
01+h6i

Λ5
11+h7i

Λ5
21+h8i

Λ5
31)

a2
 ) } −

6

a2
{ {f0i

Λ5
00 + f1i

Λ5
10 + f2i

Λ5
20 + f3i

Λ5
30 + f4i

Λ5
01 + f5i

Λ5
11 +

f6i
Λ5

21} +
5J2R2 

2(1−e2)3a2 ( A {f0i
Λ4

00 + f1i
Λ4

10 + f2i
Λ4

20 + f3i
Λ4

30 +

f4i
Λ4

01 + f5i
Λ4

11 + f6i
Λ4

21} −

(m0i
Λ6

00+m1i
Λ6

10+m2i
Λ6

20+m3i
Λ6

30+m4i
Λ6

40+m5i
Λ6

50)

a2 −

(m6i
Λ6

01+m7i
Λ6

11+m8i
Λ6

21+m9i
Λ6

31+m10i
Λ6

41)

3a2  ) }]                               (13) 

 

where 

 

 Λq
ps

= ∫
cosp E sins E

(1−e cos E)q  dE (14) Λq
ps

= ∫
cosp E sins E

(1−e cos E)q  dE              (14) 

 

 A = 2 −
16 sin2 i

3
  

 

Λ0
00 = E, Λ1

00 =
2

η0.5  tan−1[ (
1+e

1−e
)

0.5
tan

E

2
 ]   

 

Λn
00 =

1

(n − 1)η
 [

e sin E

φn−1 + (2n − 3)Λn−1
00 − (n − 2)Λn−2

00 ]  n > 1 

 

Λn
01 = −

1

(n−1)eΛn−1  n > 1  

 

  Λn
11 =

1

e
( Λn

01 − Λn−1
01 ) n > 2   

 

Λ5
21 =

1

e2  [ Λ5
01 − 2Λ4

01 + Λ3
01]  

 

 Λn
m0 = 1/(−e)m ∑ (m

k
)m

k=0 (−1)m−kΛn−k
00   

 

Λ5
31 =

 
1

1−e cos E
−

1.5

(1−e cos E)2+
1

(1−e cos E)3−
0.25

(1−e cos E)4 

e4   
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Λ6
21 =

 −
0.2

(1−e cos E)5+
0.5

(1−e cos E)4−
1

3(1−e cos E)3 

e3
  

 

Λ6
31 =

 
−0.2

(1−e cos E)5+
3

4(1−e cos E)4−
1

(1−e cos E)3+
0.5

(1−e cos E)2 

e4   

 

Λ6
41 = −

cos5 E

5
− e cos6 E − 3e2 cos7 E − 7e3 cos8 E  

 

with 

 

φ =
r

a
 η = 1 − e2  

 

L =
1

a(1−e2)
  

 

(1 + e cos θ) =
1−e2

1−e cos E
  

 

h0k
= b3g3k

+ b0g0k
  

 

h1k
= b3g4k

+ b4g3k
+ b0g1k

+ b1g0k
  

 

h2k
= b4g4k

− b3g3k
+ b0g2k

+ b1g1k
 + b2g0k

  

 

h3k
= −b3g4k

− b4g3k
+ b1g2k

+ b2g1k
  

 

h4k
= b2g2k

− b4g4k
  

 

h5k
= b0g3k

+ b3g0k
  

 

h6k
= b0g4k

+ b1g3k
+ b3g1k

+ b4g0k
 

 

h7k
= b1g4k

+ b2g3k
+ b3g2k

+ b4g1k
 

 

h8k
= b2g4k

+ b4g2k
  

 

m0i
= b0f0i

+ b3f4i
  

 

m1i
= b1f0i

+ b3f5i
+ b4f4i

+ b0f1i
  

 

m2i
= b2f0i

+ b3f6i
+ b4f5i

− b3f4i
+ b2f0i

+ b1f1i
  

 

m2i
= b2f0i

+ b3f6i
+ b4f5i

− b3f4i
+ b2f0i

+ b1f1i
  

 

m3i
= b4f6i

− b3f5i
− b4f4i

+ b0f3i
+ b1f2i

+ b2f1i
  

 

m4i
= −b3f6i

− b4f5i
+ b1f3i

+ b2f2i
 

 

m5i
= b2f3i

− b4f6i
  

 

m6i
= b3f0i

− b0f4i
  

 

m7i
= b4f0i

+ b0f5i
+ b1f4i

+ b3f1i
  

 

m8i
= b0f6i

+ b1f5i
+ b2f4i

+ b3f2i
+ b4f1i

  

 

m9i
= b1f6i

+ b2f5i
+ b3f3i

+ b4f2i
  

 

m10i
= b2f6i

+ b4f3i
. 

4. Numerical results 

To compute α and β, we have programed Equation (13) in double 

precision arithmetic on a NV57H26u Gateway computer. Four test 

cases A, B, C and D with eccentricities 0.01, 0.1, 0.2 and 0.3 at 

high inclination of 85° having a perigee height of 200 km are cho-

sen for detailed numerical study. The initial values chosen for 

right ascension of ascending node (Ω) = 60o and argument of peri-

gee (ω) = 0o. Numerical integration of the KS element equations 

of motion with J2 [14] is carried out with fixed step-size fourth-

order Runge-Kutta-Gill method with a step-size of one degree in 

eccentric anomaly. The difference between the numerically inte-

grated and analytically computed values with the modified theory 

(ANAL1) and existing theory (ANAL2) during half a revolution 

with a single analytical step size are given in Table 1. It may be 

noted that the modified theory provides more accurate values of 

the semi-major axis during most of the part of the orbit in half a 

revolution. The improvement in the semi-major axis with the new 

theory at 90o step size is found to be 19.2 m, 11.4 m, 5 m and 3.7 

m, respectively for the four test cases, against the error of 20.1 m, 

23.7 m, 21.4 m and 8.6 m, respectively. The difference between 

the new theory and the old theory for i = 85 degrees in semi-major 

axis, eccentricity and inclination are given in Figures 1, 2 and 3, 

respectively. 

 

 

Table 1: Variation in Semi-Major Axis during Half a Revolution with J2 

Parameter Case Method 
ANAL steps (deg)  

30 60 90 150 165 180 

a(m) 

A 
NUM-ANAL1 -0.05 -3.6 -20.1 -3.8 21.9 43.8 

NUM-ANAL2 -1.33 -14.9 -39.3 -3.4 22.9 44.8 

B 
NUM-ANAL1 -0.6 -8.6 -23.7 10.2 27.5 40.5 

NUM-ANAL2 -2.2 -19.2 -35.1 15.5 33.2 46.3 

C 
NUM-ANAL1 -1.2 -14.0 -21.4 22.4 33.4 40.9 
NUM-ANAL2 -3.9 -24.4 -26.4 29.9 40.8 48.2 

D 
NUM-ANAL1 0.8 -15.2 -8.6 36.7 43.5 47.9 

NUM-ANAL2 -7.3 -29.2 -12.3 41.7 47.9 51.9 
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Fig. 1: Difference in Semi-Major Axis between the Modified and Existing Theory. 

 

 
Fig. 2: Difference in Eccentricity between the Modified and Existing Theory. 

 

 
Fig. 3: Difference in Inclination between the Modified and Existing Theory. 

 

Figures 1-3 provide the differences in semi-major axis, 

eccentricity and orbital inclination, respectively, between the 

modified and the old theory. It may be noted that the maximum 

improvement with the new theory is for the small eccentricity 

(0.01) case A and the magnitude of improvement in semi-major 

axis, eccentricity and inclination are ~19 m, 6.2 x 10-6 and 2.19o x 

10-5, respectively. The maximum improvement happened with a 

single step-size in eccentric anomaly of 90o for semi-major axis 

and inclination, and a single step-size of ~148o for eccentricity. 
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5. Conclusion 

A modified non-singular theory for analytical solution of short-

term motion of satellites with J2 is evolved using KS regular ele-

ments. The study showed that with the inclusion of the perturbed 

‘r’ from King-Hele [10], the accuracy of the solution increases 

significantly. The results are documented up to half a revolution. 

The theory provides accurate solution for small as well as high 

inclination orbits.  
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