

International Journal of Advanced Chemistry

Website: www.sciencepubco.com/index.php/IJAC

Research paper

Mechanical and thermal properties versus effective cubic lattice constant in Cu₂-II-IV-VI₄ quaternary compounds

Marouane Djellal¹, Aymen Mebarki¹, Abdelfateh Benmakhlouf¹, Salah Daoud²*

¹Faculté des sciences et de la technologie, Université de Bordj Bou Arreridj, Bordj Bou Arreridj, 34000, Algérie

²Laboratory of Materials and Electronic Systems (LMSE), Faculty of Sciences and Technology, Bordj Bou Arreridj University, 34000

Bordj Bou Arreridj, Algeria

*Corresponding author E-mail:salah_daoud07@yahoo.fr

Abstract

The present work aims to study the dependence of the bulk modulus B and the Debye temperature θ_D with the effective cubic lattice constant a_{eff} of some Cu₂-II-IV-VI₄ compounds. We are also studied the correlation between the bulk modulus B, the Debye temperature θ_D , the microhardness H and the melting point T_m.

The fits of the data of the bulk modulus B and the Debye temperature θ_D versus the effective cubic lattice constant a_{eff} show that B of Cu₂-II-IV-VI₄ semiconducting materials decreases almost linearly with increase of the effective cubic lattice constant a_{eff} , while that of Debye Temperature θ_D decreases exponentially with a rising of the effective cubic lattice constant a_{eff} . The coefficients of the correlation were found at around -0.78 for the bulk modulus B, and at around -0.94 for the Debye temperature, respectively.

For the bulk modulus B, the best fit was obtained using the following expression: $B = -596.52 a_{eff} + 393.4$, where B is expressed in GPa, and a_{eff} in nm, while that of θ_D is: $\theta_D = 165.46 + 3.8 exp$ (-57.2 a_{eff}), respectively. The average error on the estimation of B was found at around 10%, while that on the estimation of θ_D is only around 4.5%, respectively. Our expressions perhaps used with high accurate to predict the bulk modulus B and the Debye temperature θ_D of other quaternary Cu₂-II-IV-VI₄ semiconducting materials.

Keywords: Cu₂-II-IV-VI₄ Semiconductors; Least-Squares Fit; Thermal Properties; Effective Cubic Lattice Constant; Microhardness

1. Introduction

Functional materials play an important role in developing new technologies due to their interesting physical properties [1–12]. Several works [13–20] investigated the correlation between the different properties of functional semiconducting materials. Daoud [13] has established simplified expressions for calculating Debye temperature and melting point of II-VI and III-V compounds; while in other work [14], He investigated the correlation between Debye temperature and lattice thermal conductivity in II-VI and III-V semiconductors.

Because of their applications in the fabrication of low cost solar cells and their large magneto-optical effects which are observed when II elements are paramagnetic atoms, I_2 -II-IV-VI₄ (II = Zn, Cd, Hg, Mn, Fe or Co, IV = Si, Ge, Sn or Pb and VI = S, Se or Te) quaternary semiconducting materials, Quintero et al. [16] used X-ray powder diffraction measurements, at 300 K, and differential thermal analysis (DTA) to investigate the thermal properties of several polycrystalline samples of Cu₂-II-IV-S4(Se4) magnetic materials.

Adachi [17] studied the correlation between several physical properties of tetragonal and orthorhombic Cu_2 -II-IV-VI₄ compounds and their molecular weight; while very recently, Daoud and co-authors [18] investigated the correlation between the melting point T_m and the microhardness H of tetragonal and orthorhombic Cu_2 -II-IV-VI₄ (II = Zn, Cd, Hg; IV = Si, Ge, Sn) compounds. They also use their model to predict the microhardness H of Cu_2ZnSnS_4 (CZTS) compound.

The physics of the photovoltaic effect including the spectral irradiance of solar radiation and the influence of the Earth's atmosphere on it, and several other interesting physical properties of copper zinc tin sulfide-based thin-film solar cells were presented by Ito [19]. Additionally, He explored the electronic and optical properties of the kesterite and stannite phases of Cu_2ZnSnS_4 and Cu_2ZnSnS_4 (CZTSe) by means of first-principles modeling.

Chalapathy et al. [21] elaborate Cu₂ZnSnS₄ thin films by sulfurization of Cu/ZnSn/Cu precursorin sulfur atmosphere. The CZTS films obtained exhibited the Kesterite phase; and under standard AM 1.5 conditions, they found that the solar cell fabricated with the CZTS material showed a conversion efficiency of ~ 4.59% for 0.44 cm².

In the present work, we studied firstly the correlation between the bulk modulus B, the Debye temperature θ_D and the effective cubic lattice constant a_{eff} of tetragonal and orthorhombic Cu₂-II-IV-VI₄ (II = Zn, Cd, Hg; IV = Si, Ge, Sn) compounds, then the correlation between the bulk modulus B and the melting point T_m; and the Debye temperature θ_D and the microhardness H of these materials.

2. Theory, results and discussion

At normal temperature and pressure, most of the Cu₂–II–IV–VI₄ semiconducting compounds crystallize in the tetragonal or orthorhombic structures [17], [19]. The unit cell geometry of tetragonal phase was assigned as: $a = b \neq c$ (lattice constants), and $\alpha = \beta = \gamma = 90^{\circ}$ (lattice angles), while in orthorhombic structure, the unit cell geometry was assigned as: $a \neq b \neq c$, and $\alpha = \beta = \gamma = 90^{\circ}$ [15]. In the tetragonal phase, the effective cubic lattice constant a_{eff} is calculated, using the lattice parameters a and c as follow: $a_{eff} = (a^2c/2)^{1/3}$ [17].

We compile in Table 1 the effective cubic lattice constant a_{eff} [17], the melting points T_m [17], the microhardness H [17], the bulk modulus B [17], [22 - 24], and the Debye temperature [16], [17], [22], [23] reported for a number of Cu₂-II-IV-VI₄ compounds. It must be noted that the data of the bulk modulus B taken from the Ref.[24] are theoretical, and they are approximately reproduced from the histogram of the figure 9 reported in the work of Hasan et al. [24]

 Table 1:Effective Cubic Lattice Constant a_{eff} , Melting Point T_m , Bulk Modulus B, Debye Temperature θ_D , and Microhardness H of Some Cu₂-II-IV-VI₄

 Semiconducting Compounds[17],^a Ref [22],^b Ref [23], ^c Ref [16], ^d Ref [24], Values with * are Theoretical

Materials	Structure-type	a _{eff} (nm)	$T_m(K)$	B _m (GPa)	H (GPa)	$\theta_{\rm D}({\rm K})$
Cu2ZnSiS4	Orthorhombic	0.5265	1396	81 ^a *	3.4	490 ^a *
Cu ₂ ZnSiSe ₄	Orthorhombic	0.5539	1246	61 ^b *	2.8	282 ^b *
Cu ₂ ZnGeS ₄	Tetragonal	0.5313	1377	72 ^d *	3.4	-
Cu ₂ ZnSnS ₄	Tetragonal	0.5428	1377	86	-	302
Cu ₂ ZnSnSe ₄	Tetragonal	0.5682	1259	70	-	195°
Cu2CdSiS4	Orthorhombic	0.5364	1289	64 ^d *	2.5	-
Cu ₂ CdGeS ₄	Orthorhombic	0.5419	1288	70 ^d *	-	267 °
Cu ₂ CdGeSe ₄	Tetragonal	0.5674	1107	56 ^d *	1.9	198 °
Cu ₂ CdSnS ₄	Tetragonal	0.5530	1190	62 ^d *	2.2	-
Cu2CdSnSe4	Tetragonal	0.5786	1054	34 ^d *	1.5	182 °
Cu2HgSnSe4	Tetragonal	0.5678	985	55 ^d *	1.4	166 °
Cu ₂ HgGeSe ₄	Tetragonal	0.5787	1027	51 ^d *	1.5	-

We examine the correlation between the bulk modulus B and the effective cubic lattice constant a_{eff} of different Cu₂-II-IV-VI₄ compounds, so the data of B and a_{eff} reported in Table 1 are traced in Figure 1. We can observe that B decreases with the increase of a_{eff} . The linear fit was given as follow: B = - 596.52 a_{eff} + 393.4, where B is expressed in GPa, and a_{eff} in nm. The significance of the regression is given as the probability p of the null hypothesis p < 2.81 x10⁻³, while the coefficient of the correlation was found at around -0.78. In Table 2, we report the calculated bulk modulus B of different Cu₂-II-IV-VI₄ semiconducting compounds using our model (B = - 596.52 a_{eff} + 393.4). We also calculated the error on B, the average error on the estimation of B was found at around 10%.

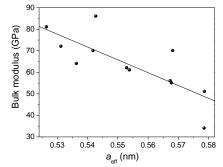


Fig. 1: Bulk Modulus B Versus the Effective Cubic Lattice Constant aeff for Some Cu₂-II-IV-VI₄ Compounds.

Several thermal properties of different materials with different crystallographic structures have been successfully determined from the cohesive energy and elastic constants [25-30]. The bulk modulus B and the melting point T_m data of Cu₂-II-IV-VI₄ compounds listed in Table 1 are plotted in Figure 2. We can observe that B increases with the increase of the melting point T_m . The linear fit was given as follows: $B = 0.084 T_m$ -38.12, where B is expressed in GPa, and T_m in K. The significance of the regression is given as the probability p of the null hypothesis $p < 3.58 \times 10^{-4}$, and a squared correlation coefficient $R^2 = 0.86$.

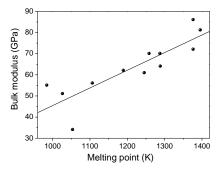


Fig. 2: Bulk Modulus B versus Melting Point Tm for Some Cu2-II-IV-VI4 Semiconducting Compounds.

In Table 2, we report the calculated bulk modulus B of Cu_2 -II-IV-VI₄ compounds using $B = 0.084T_m$ -38.12 model, along the results obtained from our first model (B = - 596.52a_{eff} + 393.4). We also calculated the errors on B, the average errors on the estimation of B were found at around 9.75% from our second model (B = 0.084T_m-38.12) and 10% from our first model (B = - 596.52a_{eff} + 393.4), respectively. Our expressions related B, a_{eff} and T_m can be used to predict the bulk modulus B of other Cu₂-II-IV-VI₄ compounds.

The Debye temperature θ_D and the effective cubic lattice constant a_{eff} data of some Cu₂-II-IV-VI₄ reported in Table 1 are plotted in Figure 3. We can observe clearly that θ_D decreases not linearly with the increase of the effective cubic lattice constant a_{eff} . The best exponential fit with an expression having three adjustable parameters of θ_D (expressed in K) versus a_{eff} (expressed in nm) was given as follows: $\theta_D = 165.46 + 3.8 \exp(-57.2 a_{eff})$. The significance of the regression is given with a coefficient of the correlation of around -0.94.

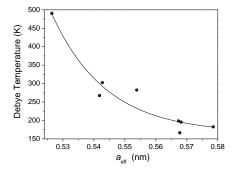


Fig. 3: Debye Temperature θ_D Versus the Effective Cubic Lattice Constant a_{eff} for Some Cu₂-II-IV-VI₄ Compounds.

We also calculated the error on the Debye Temperature θ_D , the average error on θ_D was found at around 4.5%. Our expression related θ_D and a_{eff} can be used to predict the Debye Temperature θ_D of other Cu₂-II-IV-VI₄ semiconducting compounds.

The Debye Temperature θ_D and the microhardness H data listed in Table 1 are plotted in Figure 4. We observe that Debye Temperature θ_D rises also not linearly with increase of the microhardness H. The polynomial fit was given as follows: $\theta_D = -416.5 + 879.8 \text{ H} - 434.4 \text{ H}^2 + 74.7 \text{ H}^3$, where θ_D is expressed in K, and H in GPa. The significance of the regression is given with a coefficient of the correlation of around 0.999, and the probability p of the null hypothesis p < 0.0244. Our expression related θ_D and H was used to predict the Debye Temperature θ_D of Cu₂ZnGeS₄, Cu₂CdSiS₄ and Cu₂CdSnS₄ compounds. The results were found: 489 K for Cu₂ZnGeS₄, 235 K for Cu₂ZnGeS₄, respectively. To the best of our knowledge, there are no data available in the literature on θ_D for Cu₂ZnGeS₄, cu₂CdSiS₄ and Cu₂CdSnS₄ materials.

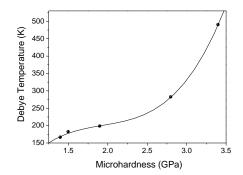


Fig. 4: Debye Temperature θ_D versus the Microhardness H for Some Cu₂-II-IV-VI₄ Semiconducting Compounds.

Table 2: Calculated Bulk Modulus B (GPa) and Debye Temperature $\theta_D(K)$ and the Errors on B and on θ_D for Some Cu ₂ -II-IV-VI ₄ Semiconductors							
$\theta_{\rm D}^{***}$ $\theta_{\rm DCalc}^{****}$ Error (%) on $\theta_{\rm DCalc}$) _D ****						
489 0.17							
281 0.33							
489 -							
235 -							
199 0.66							
212 -							
178 2.25							
169 1.67							
178 0.17							
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						

* Using B = - 596.52 a_{eff} + 393.4, ** Using B = 0.084T_m-38.12, *** Using θ_D = 165.46+3.8 exp (-57.2 a_{eff}), **** Using θ_D = - 416.5 + 879.8 H - 434.4 H² + 74.7 H³

3. Conclusion

Using the data reported in the literature, we investigate the dependence between the bulk modulus B, the Debye temperature θ_D and the effective cubic lattice constant a_{eff} of Cu₂-II-IV-VI₄ (II = Zn, Cd, Hg; IV = Si, Ge, Sn) compounds. We found that the bulk modulus B decreases almost linearly with the increase of the effective cubic lattice constant a_{eff} as follow: B = - 596.52 a_{eff} + 393.4, where B is in GPa, and a_{eff} in nm. We found also that the bulk modulus B increases almost linearly with the increase of the estimation of B was found at around 10%.

We studied also the dependence between the Debye temperature θ_D and the effective cubic lattice constant a_{eff} of our materials of interest. The Debye temperature θ_D decreases exponentially with the increase of the effective cubic lattice constant a_{eff} as follow: $\theta_D = 165.46 + 3.8 \exp(-57.2 a_{eff})$. The average errors on the estimation of θ_D was only around 4.5% from $\theta_D = 165.46 + 3.8 \exp(-57.2 a_{eff})$ model, and around 1% from $\theta_D = -416.5 + 879.8 \text{ H} - 434.4 \text{ H}^2 + 74.7 \text{ H}^3$ model, respectively.

References

- X. He, and H. Shen, "First-principles study of elastic and thermo-physical properties of kesterite-type Cu₂ZnSnS₄", Physica B: Condensed Matter, Vol. 406, No. 24, (2011), pp. 4604–4607. <u>https://doi.org/10.1016/j.physb.2011.09.035</u>.
- [2] S. Daoud, and A. Latreche, "Comment on density functional investigation on electronic structure and elastic properties of BeX at high pressure", Indian Journal of Physics: Vol. 90, No.11, (2016), pp.1243-1244. <u>https://doi.org/10.1007/s12648-016-0863-4</u>.
- [3] H. Rekab-Djabri, M. M. Abdus Salam, S. Daoud, M. Drief, Y. Guermit, and S. Louhibi-Fasla, "Ground state parameters, electronic properties and elastic constants of CaMg₃: DFT study", Journal of Magnesium and Alloys, Vol. 8, No.4, (2020), pp. 1166-1175. <u>https://doi.org/10.1016/j.jma.2020.06.007</u>.
- [4] S. Daoud, "Comment on structural phase transition, electronic and elastic properties in TIX (X = N, P, As) compounds: Pressure-induced effects" Computational Materials Science, Vol. 111, No. 1, (2016), pp. 532 - 533. <u>https://doi.org/10.1016/j.commatsci.2015.09.022</u>.
- [5] S. Daoud, "Sound velocities and thermal properties of BX (X=As, Sb) compounds", International Journal of Scientific World: Vol. 3, No.1, (2015), pp. 43-48. <u>https://doi.org/10.14419/ijsw.v3i1.4039</u>.
- [6] H. Rekab-Djabri, R. Khatir, S. Louhibi-Fasla, I. Messaoudi, and H. Achour, "FPLMTO study of new phase changes in CuX (X= Cl, Br, I) compounds under hydrostatic pressure", Computational Condensed Matter, Vol. 10, No. 3, (2017), pp. 15-21. <u>https://doi.org/10.1016/j.cocom.2016.04.003</u>.
- [7] S. Daoud, P. K. Saini, and H. Rekab-Djabri, "Elastic constants and optical phonon frequencies of BX (X= P, As, and Sb) semiconductors: Semiempirical prediction", International Journal of Physical Research: Vol. 8, No.2, (2020), pp. 45-49. <u>https://doi.org/10.14419/ijpr.v8i2.31001</u>.
- [8] S. Daoud, "Sound velocities and thermal properties of BeX (X=S, Se and Te) alkaline-earth chalcogenides", International Journal of Scientific World, Vol.5, No.1, (2017), pp. 9-12. <u>https://doi.org/10.14419/ijpr.v8i2.31001</u>.
- [9] N. Bioud, X-W. Sun, S. Daoud, T. Song, R. Khenata, and S. Bin Omran," High-temperature and high-pressure physical properties of CuI with zincblende phase by a systematic *ab initio* investigation", Optik, Vol. 155, No. 2, (2018), pp. 17-25. <u>https://doi.org/10.1016/j.ijleo.2017.11.006</u>.
- [10] J. Tan, G. Ji, X. Chen, L. Zhang, and Y. Wen, "The high-pressure phase transitions and vibrational properties of zinc-blende XTe (X = Zn, Cd, Hg): Performance of local-density-approximation density functional theory", Computational Materials Science, Vol. 48, No. 4, (2010), pp. 796-801. <u>https://doi.org/10.1016/j.commatsci.2010.03.037</u>.
- [11] S. Daoud, N. Bioud, and N. Lebga, "Structural, elastic, piezoelectric and electronic properties of (B3) AlP compound under pressure", Journal of optoelectronics and advanced materials, Vol. 16, No. 1-2, (2014), pp. 207-214. https://joam.inoe.ro/articles/structural-elastic-piezoelectric-and-electronic-properties-of-b3-alp-compound-under-pressure/.
- [12] S. Daoud, N. Bioud, N. Lebga, and R. Mezouar, "Optoelectronic and thermal properties of boron-bismuth compound", International Journal of Physical Research, Vol. 2, No. 2, (2014), pp27-34. <u>https://doi.org/10.14419/ijpr.v2i2.2760</u>.
- [13] S. Daoud, "Simplified expressions for calculating Debye temperature and melting point of II-VI and III-V semiconductors", International Journal of Scientific World: Vol. 3, No.2, (2015), pp. 275-279. <u>https://doi.org/10.14419/ijsw.v3i2.5314</u>.
- [14] S. Daoud, "Linear correlation between Debye temperature and lattice thermal conductivity in II-VI and III-V semiconductors", International Journal of Scientific World: Vol. 3, No. 2, (2015), pp. 216-220. <u>https://doi.org/10.14419/ijsw.v3i2.4793</u>.
- [15] S. Daoud, "Empirical study of elastic properties of BX (X = As, Sb) materials", International Journal of Scientific World, Vol.3, No.1, (2015), pp. 37-42. <u>https://doi.org/10.14419/ijsw.v3i1.4022</u>.
- [16] M. Quintero, E. Moreno, S. Alvarez, J. Marquina, C. Rincón, E. Quintero, P. Grima, J-A. Heano, and M. A. Macías, "Lattice parameter values and phase transitions for the Cu₂-II-IV-S₄(Se₄) (II = Mn, Fe, Co; IV=Si, Ge, Sn) magnetic semiconductor compounds", Revista Latinoamericana de Metalurgia y Materiales, Vol. 34, No. 1, (2014), pp. 28-38. http://ve.scielo.org/pdf/rlmm/v34n1/art03.pdf
- [17] S. Adachi, "Earth-Abundant Materials for Solar Cells", John Wiley & Sons Ltd, the atrium, Southern Gate, Chichester, West Sussex, Po19 8SQ, United Kingdom, (2015). ISBN 9781119052777 <u>https://doi.org/10.1002/9781119052814</u>.
- [18] S. Daoud, H. Rekab-Djabri, and N. Beloufa, "Melting point and microhardness of Cu₂-II-IV-VI₄ compounds ", International Journal of Physical Research, Vol. 10, No. 1, (2022), pp. 53-54. https://www.sciencepubco.com/index.php/IJPR/article/download/31946/16796
- [19] K. Ito, "Copper Zinc Tin Sulfide-Based Thin-Film Solar Cells", John Wiley & Sons Ltd, the atrium, Southern Gate, Chichester, West Sussex, Po19 8SQ, United Kingdom, (2015). ISBN 978-1-118-43787-2 <u>https://doi.org/10.1002/9781118437865</u>.
- [20] R. Mezouar, N. Bioud, and A. Benmakhlouf, "Correlation trend between the bulk modulus, microhardness and the lattice parameter of III-V semiconductors", International Journal of Advanced Chemistry, Vol. 10, No. 1, (2022), pp. 9-11. https://www.sciencepubco.com/index.php/IJAC/article/view/32020
- [21] R.B.V. Chalapathy, G. S. Jung, and B. T. Ahn, "Fabrication of Cu₂ZnSnS₄ films by sulfurization of Cu/ZnSn/Cu precursor layers in sulfur atmosphere for solar cells", Solar Energy Materials & Solar Cells, Vol. 95, No.12, (2011), pp. 3216–3221. <u>https://doi.org/10.1016/j.solmat.2011.07.017</u>.
- [22] Y. L. Gao, and Y. J. Dong, "Structural, mechanical and thermal properties of Cu₂ZnSiS₄ with four structures from the first-principle calculations", International Journal of Modern Physics B, Vol. 33, No. 9, (2019), pp. 1950067 (10 pages). <u>https://doi.org/10.1142/S021797921950067X</u>.
- [23] Y. L. Gao, W. S. Guan, and Y. J. Dong. "Elastic and thermal properties of orthorhombic and tetragonal phases of Cu₂ZnSiSe₄ by first principles calculations". Semiconductors, Vol. 54, No. 10, (2020), pp. 1185–1190. <u>https://doi.org/10.1134/S1063782620100115</u>.
- [24] S. Hasan, K. Baral, N. Li, and W-Y. Ching, "Structural and physical properties of 99 complex bulk chalcogenides crystals using frst-principles calculations", Scientific Reports, Vol. 11, (2021), pp. 9921 (18 pages). <u>https://doi.org/10.1038/s41598-021-89281-6</u>.
- [25] A. Latreche and S. Daoud "Comment on pressure induced phase transition, elastic and thermal properties of rare earth tellurides", Transactions of the Indian Institute of Metals: Vol. 70, No.4, (2017), pp. 1159 -1160. <u>https://doi.org/10.1007/s12666-016-0969-6</u>.
- [26] N. Bioud, "Comment on structural, electronic, elastic, optical and thermodynamic properties of copper halides CuCl, CuBr and their ternary alloys $CuCl_{1-x}Br_x(0.0 \le x \le 1.0)$ using full-potential linear muffin-tin orbital (FP-LMTO) method [Optik 127 (2016) 4559-4573]", Optik, Vol. 127, No.23, (2016), pp. 11395-11397. <u>https://doi.org/10.1016/j.ijleo.2016.08.020</u>.
- [27] K. Tang, T. Wang, W. Qi, and Y. Li, "Debye temperature for binary alloys and its relationship with cohesive energy", Physica B: Condensed Matter, Vol. 531, No.2, (2018), pp. 95–101.<u>https://doi.org/10.1016/j.physb.2017.12.025</u>.
- [28] S. Daoud, N. Bioud, L. Belagraa, and N. Lebga, "Elastic, optoelectronic and thermal properties of boron phosphide", Journal of Nano-and Electronic Physics, Vol. 5, No.4, (2013), pp. 04061 (6pp). https://jnep.sumdu.edu.ua/download/numbers/2013/4/articles/jnep_2013_V5_04061.pdf
- [29] G. Sai Gautam, and K.C. Hari Kumar, "Elastic, thermochemical and thermophysical properties of rock salt-type transition metal carbides and nitrides: A first principles study", Journal of Alloys and Compounds, Vol. 587, No. 2, (2014), pp. 380-386. <u>https://doi.org/10.1016/j.jallcom.2013.10.156</u>.
- [30] S. Daoud, N. Bioud, L. Belagraa, and N. Lebga, "Corrigendum to the Manuscript Entitled "Elastic, Optoelectronic and Thermal Properties of Boron Phosphide" [J. Nano- Electron. Phys. 5 No 4, 04061 (2013)]", Journal of Nano-and Electronic Physics: Vol. 14, No.2, (2022), pp. 02030 (1pp). <u>https://doi.org/10.21272/jnep.14(2).02030</u>.