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Abstract 
 

Based on the experimental ground state parameters reported in the literature (Luo et al., Phys. Rev. B 50 (1994)16232-16237); in the 

present work we reproduce the variation in the volume with the pressure up to 40 GPa for calcium sulfide (CaS) compound, which criti-

cized in cubic rock-salt structure. We used two different models of equation of state (EOS); the fist is the model of Vinet, while the sec-

ond one is the EOS Murnaghan’s model. We studied also the effect of the pressure on the crystal density. We established some analytical 

models relating the volume with the pressure, as well as the crystal density with the pressure.  

Finally, we predicted the melting point, the Debye temperature and the sound velocity of CaS material, which are 1202.2 K, 423.7 K, and 

4049.5 m/s, respectively. 
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1. Introduction 

II–VI semiconducting materials have recently attracted great attention [1-3]. These binary compounds are made from group II and VI 

elements of the Periodic Table. II–VI semiconductors are used as host material for various applications ranging from photo and electro-

luminescent thin films to magneto-optical devices [4]. At room temperature and ambient pressure, several IIB–VIB binary compounds 

(ZnS, ZnSe, CdS, CdTe,…..etc) crystallize in zincblende (B3) or/and wurtzite (B4) phases [5, 6], while the majority of IIA–VIB group 

(MgS, MgSe, CaTe, …..etc) crystallize in rock-salt (B1) or/and zincblende (B3) phases [1, 7, 8].  

Using the energy-dispersive x-ray-diffraction techniques, Luo et al. [1] have investigated the crystal structures of three calcium chalco-

genides CaS, CaSe, and CaTe compounds. They found that first-order phase transformation from the NaC1 phase to the CsCl phase 

was observed at 40 GPa for CaS semiconducting compound.  

Using the FP-LAPW method, Amari [7] has studied the structural, electronic magnetic and elastic properties of Ca0.75Mn0.25S and 

Ca0.75Fe0.25S semiconductors, while Ali et al. [8] have investigated the structural parameters, electronic properties and optical response of 

II–VI compounds through the modified Becke–Johnson (mBJ) potential. They found that mBJ is an efficient theoretical technique for the 

calculation of the band structures of II–VI chalcogenides compared to other theoretical approaches (LDA, GGA, and EV-GGA). 

In the present work, we reproduce the variation in the volume with the pressure for CaS semiconductor. In order to show how the varia-

tion in the volume –ΔV/V0 of the unit cell and the crystal density in CaS compound behave under applied hydrostatic pressure p, we used 

the experimental ground state parameters (a= 5.689 Å, B = 64 GPa, and B′0 = 4.2) reported by Luo et al. [1]. Additionally, we expected 

the melting point and the Debye temperature of CaS at ambient conditions. 

2. Theory, results and discussion 

The study of equation of state means the investigation of pressure, volume and temperature (P–V–T) relation. By assuming that the bulk 

modulus B has a linear dependence on the applied pressure to the crystal (i.e., B (p) = B0 + B′0 p), it can be deduced as [9]: 
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Where B0 and V0 represent the bulk modulus and unit cell volume at ambient pressure, respectively, while B′0 is the first-order pressure 

derivative of the bulk modulus evaluated at ambient pressure (the derivative of B with respect to pressure).  

It should be noted that the Murnaghan EOS is based on the empirical data, and it does not include non-linear pressure contributions. 

The investigation of the pressure dependence with the volume can be also expressed with a universal equation of state, called Vinet mod-

el, given as follow [10], [11]: 
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Fig. 1 shows the variation in the unit cell volume –ΔV/V0 of CaS compound as a function of pressure p. The fits of our data on (–ΔV/V0) 

as a function of p (where p is expressed in GPa) obey these 2nd order polynomial expressions: –ΔV/V0= 0.65 x 10-2 +1.15 x 10-2 p -1.20 x 

10-4 p2 (from Vinet EOS), and –ΔV/V0= 0.69 x 10-2 +1.13x10-2 p -1.25 x 10-4 p2 (from Murnaghan EOS), respectively.  
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Fig. 1:Variation in the Unit Cell Volume –ΔV/V0 Versus Pressure for Cubic Rock-Salt (B1) CaS Compound. 

 

Afterwards, the pressure effects on the crystal density ρ for CaS compound were studied. In a conventional unit cell of cubic zinc-blende 

(B3) and cubic rock-salt (B1) lattices, there are four molecules [12-17]; while these having cubic CsCl-type (B2) structure, there is only 

one molecule [18-21]. The pressure dependence of the crystal density ρ for CaS semiconducting compound was offered in Fig. 2. It is 

conventional to fit the crystal density ρ vs pressure to the form: ρ(p) = ρ0 + α p + β p2 [11, 22]. The best fits of our data regarding the 

crystal density ρ (expressed in g/cm3) as a function of pressure p (expressed in GPa) obey the following polynomial expressions: ρ = 2.61 

+ 3.44 x 10-2 p -2.46 x 10-4 p2 (from Vinet EOS), and ρ = 2.61 + 3.41 x 10-2 p -2.80 x 10-4 p2 (from Murnaghan EOS), respectively.  
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Fig. 2:Crystal Density ρ Versus Pressure for Cubic Rock-Salt (B1) CaS Compound. 

 

As the pressure varied from 0 to 40 GPa, the crystal density ρ values of CaS change from 2.603 to 3.536 g/cm3 usingMurnaghan’s model, 

and from 2.603 to 3.601 g/cm3 using Vinet’s model, respectively. At zero-pressure, our value (2.603 g/cm3) of ρ for CaS compound is 

slightly higher than that(2.316 g/cm3) of AlP semiconducting compound[11]. 

Under consideration of the scarce data on the thermophysical properties of CaS material, next we discuss the melting point Tm and the 

Debye temperature θD of CaS material. The melting point Tm of several cubic crystals correlates with the bulk modulus B as follow Tm = 

9.3B + 607 [23], [24], where Tm is expressed in K, and B is expressed in GPa. Replacing in this expression the experimental bulk modu-

lus B (64 GPa) reported by Luo et al. [1], the predicted value of the melting point Tm for CaS semiconducting compound was found to be 

1202.2 K. To the best of authors’ knowledge, there are no experimental and other theoretical data available in literature on the melting 

point Tm for CaS material to make comparison. 

In the case of ionic binary compounds, the Debye temperature θD can be calculated as follow ( )( )1/2
0BD B/μ5r/kθ = [25, 26], here

h/2π= , h is the Planck constant, kB is the Boltzmann constant, r0 is the distance between nearest neigh-bours (the inter-ionic distance), 

B is the bulk modulus, and µ is the reduced mass. The number 5 applies only to crystals with NaCl (B1) structure; it has a different value 

for other structures [25], [26]. By substituting the experimental values reported by Luoet al. [1] of r0 and B into previous equation, the 

value of θD was found to be 423.7 K, which is in good agreement with the theoretical ones (458 K, 418 K and 556 K) reported by Narain 

[15], and θD = ~ 450 K reported by Varshney et al.[27], respectively. To the best of our knowledge, there is no experimental data availa-

ble in literature on θD for CaS compound. 

In the Debye model, the sound velocity VSmay be calculated from the Debye temperatureθDusing the following formula[28]: 
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Where N/V represents the concentration of atoms in solid.  

Replacing our value (423.7 K) of θD into equation (3), the sound velocity of CaS compound was found equal to 4049.5 m/s. 
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3. Conclusion 

Using the experimental ground state parameters reported by Luo et al. [1],we investigate the effect of the hydrostatic pressure up to 40 

GPa on the variation in the unit cell volume –ΔV/V0 and the crystal density ρ for cubic rock-salt calcium sulfide (CaS) compound, using 

two models of equation of state (EOS). We established different analytical expressions relating –ΔV/V0 with the pressure, which are:  

–ΔV/V0= 0.65 x 10-2 +1.15 x 10-2 p -1.20 x 10-4 p2 using Vinet EOS model, and –ΔV/V0= 0.69 x 10-2 +1.13 x 10-2 p -1.25 x 10-4 p2 using 

Murnaghan’s EOS model, respectively. The crystal density ρ and the pressure p are related by: ρ = 2.61 + 3.44 x 10-2 p -2.46 x 10-4 p2 

(from Vinet EOS model), and ρ = 2.61 + 3.41 x 10-2 p -2.80 x 10-4 p2 (from Murnaghan EOS model). 

Furthermore, we expected the melting point, the Debye temperature and the sound velocity of CaS material, which are 1202.2 K, and 

423.7 K and4049.5 m/s, respectively. 
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