A semi-empirical estimation of ground and excited state dipole moments of zinc phthalocyanine from solvatochromic shift data

Authors

  • Abimbola Ogunsipe Federal University of Petroleum Resources, Effurun.

DOI:

https://doi.org/10.14419/ijac.v6i2.11019

Published:

2018-09-17

Keywords:

Dipole Moment, Excited State, Ground State, Solvatochromism, Zinc Phthalocyanine.

Abstract

A semi-empirical determination of ground and excited state dipole moments of zinc phthalocyanine (ZnPc) from solvatochromic shifts is hereby presented. The ratio of the excited- and ground-state dipole moments of ZnPc ( ) was estimated by a combination of the Bakshiev and the Kawski-Chamma-Viallet’s equations, while the difference in the excited- and ground-state dipole moments (Dm) was estimated usingthe molecular-microscopic solvent polarity parameters ( ), alongside the Stokes’ shifts (Dῡ) in the various solvents. The dipole moment of ZnPc is significantly higher in the excited singlet state (me = 3.12 D) than in the ground state (mg = 1.50 D). Obviously charge separation is greater in the excited state of ZnPc than in its ground state.

 

 

References

[1] Aaron JJ, Tine A, Gaye MD, Parkanyi C, Boniface C &Bieze TWN (1991) Effects of solvent on the electronic absorption and fluorescence spectra of quinazolines, and determination of their ground and excited singlet-state dipole moments. Spectrochimica Acta Part A: Molecular Spectroscopy 47A, 419-430.https://doi.org/10.1016/0584-8539(91)80119-4.

[2] Bakshiev NG (1964) Universal intermolecular interactions and their effect on the position of the electronic spectra of molecules in two component solutions. Optics and Spectroscopy 16, 821–832.

[3] Baumann W (1989) Physical Methods of Chemistry (Rossiter BW & Hamilton JF eds.), John Wiley and Sons, New Jersey, Vol. 38, p. 45.

[4] Campidelli S, Ballesteros B. Filoramo A, Diaz D, De la Torre G, Torres T, Rahman GMA, Aminur EC, Kiessling D, Werner F, Sgobba V, Guldi DM, Cioffi C, Prato M &Bourgoin J-P (2008) Facile Decoration of Functionalized Single-Wall Carbon Nanotubes with Phthalocyanines via “Click Chemistry. Journal of American Chemical Society 130, 11503-11509.https://doi.org/10.1021/ja8033262.

[5] Chamma A &Viallet P (1970) De´termination du moment dipolaired’une molecule dansUNe´tat excite singulet L application a´ l’indole, au benzimidazoleET a´ l’indazole. ComptesRendus de l Académie des Sciences - Series C – Chemistry 270, 1901–1904.

[6] Chandrasekhar K, Naik LR, Suresh HM & Math NN (2006) Steady-state absorption and fluorescence study: Dipole moments of coumarins. Indian Journal of Pure and Applied Physics 44, 292-299.

[7] Cid J-J, Yum J-H, Jang S-R, Nazeeruddin MK, Martinez-Ferrero E, Palomares E, Ko J, Graetzel M & Torres T (2007) Molecular Cosensitization for Efficient Panchromatic Dyeâ€Sensitized Solar Cells. Angewandte Chemie International Edition 46, 8358-8362.https://doi.org/10.1002/anie.200703106.

[8] Czekalla J (1960) Elektrischefluoreszenzpolarisation: die bestimmung von dipolmomentenangeregtermoleküleausdemfolarisationsgrad der fluoreszenz in starkenelektrischenfeldern. ZeitschriftfürElektrochemie 64, 1221-1228.

[9] De la Torre G, Vazquez P & Torres T (2004) Role of structural factors in the nonlinear optical properties of phthalocyanines and related compounds. Chemical Reviews 104, 3723-3750.https://doi.org/10.1021/cr030206t.

[10] Gao W & Kahn a (2002) Electronic structure and current injection in zinc phthalocyanine doped with tetrafluorotetracyanoquinodimethane: Interface versus bulk effects. Organic Electronics 3, 53–63.https://doi.org/10.1016/S1566-1199(02)00033-2.

[11] Higasi K (1953) the Dipole Moments of Fluorenone Peroxide and Bishydroperoxide. Bulletin of the Chemical Society of Japan 39, 248-250.https://doi.org/10.1246/bcsj.26.248.

[12] Husain MM, Sindhu R &Tandon HC (2012) Photophysical properties and estimation of ground and excited state dipole moments of 7â€diethylamino and 7â€diethylaminoâ€4â€methyl coumarin dyes from absorption and emission spectra. European Journal of Chemistry 3, 87â€93.https://doi.org/10.5155/eurjchem.3.1.87-93.519.

[13] Isago H, Kagaya Y & Matsushita a (2004) Solvatochromic Shift of Phthalocyanine Q-band Governed by a Single Solvent Parameter. Chemistry Letters 33, 862-863.https://doi.org/10.1246/cl.2004.862.

[14] Kabatc J, Osmialowski&Paczkowski J (2006) the Experimental Studies on the Determination of the Ground and Excited State Dipole Moments of Some Hemicyanine Dyes. SpectrochimicaActa Part A 63, 524-531.https://doi.org/10.1016/j.saa.2005.05.039.

[15] Kadish KM, Smith KM & and Guilard R (2003) the Porphyrin Handbook, Volumes 15-20. Academic Press, San Diego CA.

[16] Kawski A (1966) Der wellenzahl von elektronenbandenlumineszie—rendenmolekille. ActaPhysicaPolonica 29, 507–518.

[17] Kobayashi T, Ashida, T, Uyeda N, Surro E &Kakuda M (1971) The crystal structure of the 2:3 complex of zinc phthalocyanine and n-hexylamine. Bulletin of the Chemical Society of Japan 44, 2095-2103.https://doi.org/10.1246/bcsj.44.2095.

[18] Liptay W (1974) Excited States (Lim EC ed.), Academic Press, INC New York, Vol. 1, pp. 129-229.

[19] Mack J. &Stillman MJ (1994) Photochemical formation of the anion radical of zinc phthalocyanine and analysis of the absorption and magnetic circular dichroism spectral data - Assignment of the optical spectrum of [ZnPc(-3)]-. Journal of American Chemical Society 116, 1292-1304.https://doi.org/10.1021/ja00083a015.

[20] Nadaf YF, Mulimani BG, Gopal M &Inamdar SR (2004) Ground and excited state dipole moments of some exalite UV laser dyes from solvatochromic method using solvent polarity parameters. Journal of Molecular Structure (Theochem) 678, 177–181.https://doi.org/10.1016/j.theochem.2004.01.049.

[21] Ogunsipe A, Maree D &Nyokong T (2004) Solvent effects on the photochemical and fluorescence properties of zinc phthalocyanine derivatives. Journal of Molecular Structure 650, 131-140. https://doi.org/10.1016/S0022-2860(03)00155-8.

[22] Ogunsipea&Nyokong T (2005) Photophysical and photochemical studies of non-transition metal phthalocyaninesulphonates in aqueous and non-aqueous media. Journal of Photochemistry Photobiology A: Chemistry 173, 211-220. https://doi.org/10.1016/j.jphotochem.2005.03.001.

[23] OgunsipeA&Nyokong T (2011) Solvent Effects on the photophysicochemical properties of tetra (tert-butylphenoxy)phthalocyaninatozinc (II). ActaPhysicochimicaSinica 27, 1045-1052.

[24] Ogunsipe A (2018) Solvent effects on the spectral properties of Rhodamine 6G: Estimation of ground and excited state dipole moments. Journal of Solution Chemistry 47, 203–219.https://doi.org/10.1007/s10953-017-0706-8.

[25] Pinzon JR, Plonska-Brzezinska ME, Cardona CM, Athans AJ, Gayathri SS, Guldi DM, Herranz MA, Martin N, Torres T &Echegoyen L (2008) Sc3N@C80-Ferrocene electron-donor/acceptor conjugates as promising materials for photovoltaic applications. Angewandte Chemie International Edition 47, 4173-4176.https://doi.org/10.1002/anie.200800473.

[26] Ravi M, Samanta A &Radhakrishnan TP (1994) Excited state dipole moments from an efficient analysis of solvatochromic stokes shift data. Journal of Physical Chemistry 98, 9133–9136.https://doi.org/10.1021/j100088a007.

[27] Reichardt C &Harbusch-Gornert E (1983) Ãœberpyridiniumâ€Nâ€phenolatâ€betaine und ihreverwendungzurcharakterisierung der polarität von lösungsmitteln, X. Erweiterung, korrektur und neudefinition der ETâ€lösungsmittelpolaritätsskalamithilfeeineslipophilen pentaâ€tertâ€butylâ€substituiertenpyridiniumâ€Nâ€phenolatâ€betainfarbstoffes. Liebigs Annalen der Chemie 721–743.https://doi.org/10.1002/jlac.198319830502.

[28] Reichardt C (1994) Solvatochromic dyes as solvent polarity indicators. Chemical Reviews 94, 2319–3458.https://doi.org/10.1021/cr00032a005.

[29] Sakamoto K, Okumura E and Hirohashi R (2004) Phthalocyanine as functional dyes. IPC, Tokyo.

[30] Tomoda H, Saito S &Shiraishi S (1983) Synthesis of metallophthalocyanines from phthalonitrile with strong organic bases. Chemistry Letters 313-316.https://doi.org/10.1246/cl.1983.313.

View Full Article: