Quantum chemical investigation of spectroscopic, electronic and NLO properties of (1E, 4E)-1-(3-nitrophenyl)-5-phenylpenta-1,4-dien-3-one

  • Authors

    • N Benhalima LTPS, Abdelhamid Ibn Badis University of Mostaganem
    • S Yahiaoui LTPS, Abdelhamid Ibn Badis University of Mostaganem
    • N Boubegra LTPS, Abdelhamid Ibn Badis University of Mostaganem
    • M Boulakoud LTPS, Abdelhamid Ibn Badis University of Mostaganem
    • Y Megrouss LTPS, Abdelhamid Ibn Badis University of Mostaganem
    • A Chouaih LTPS, Abdelhamid Ibn Badis University of Mostaganem
    • F Hamzaoui LPFM Académie de Montpellier
    2018-06-12
    https://doi.org/10.14419/ijac.v6i1.11795
  • DFT, HOMO, LUMO, NBO, NLO, NPA.
  • In the present work the optimized molecular geometry and harmonic vibrational frequencies of chalcone derivative were calculated by DFT/B3LYP method with 6–31G (d,p) basis set. The vibrational assignments were performed on the basis of the potential energy dis-tribution (PED) of the vibrational modes. Natural bond orbital (NBO) analysis has been performed on title compound using B3LYP/6–31G (d,p) and HSEh1PBE /6–31G (d,p) levels in order to elucidate intermolecular hydrogen bonding, intermolecular charge transfer (ICT) and delocalization of electron density. Mulliken atomic charges, natural population analysis (NPA) and atomic polar tensors (APT) were performed. The nonlinear optical properties of the title compound are also calculated and discussed. Molecular electrostatic poten-tial and HOMO-LUMO energy levels are also computed. Ultraviolet–visible spectrum of the title compound has been calculated using TD–DFT method. The molecular orbital contributions were studied by density of states (DOSs). Global reactivity descriptors have been calculated using the HOMO and LUMO to predict compound reactivity.

     

     

     
  • References

    1. [1] Abonia R, Insuasty D, Castillo J, Insuasty B, Quiroga J, Nogueras M & Cobo J (2012), Synthesis of novel quinoline-2-one based chalcones of potential anti-tumor activity. European Journal of Medicinal Chemistry 57, 29-40. https://doi.org/10.1016/j.ejmech.2012.08.039.

      [2] Zangade SB, Jadhav JD, Lalpod, Vibhute YB & Dawane BS (2010), Synthesis and antimicrobial activity of some new chalcones and flavones containing substituted naphthalene moiety. Journal of Chemical and Pharmaceutical Research 2(1), 310-314.

      [3] Tala-Tapeh SM, Mahmoodi N & Vaziri A (2015) Synthesis of bis-chalcones based on 5, 5΄-methylene bis(2-hydroxybenzaldehyde) and screening their antibacterial activity. Journal of Applied Chemistry 9(32), 53-58.

      [4] Ballesteros JF, Sanz MJ, Ubeda A, Miranda MA, Iborra S, Paya M & Alcarz MJ (1995), Synthesis and Pharmacological Evaluation of 2'-Hydroxychalcones and Flavones as Inhibitors of Inflammatory Mediators Generation. Journal of Medicinal Chemistry 38(14), 2794-2797. https://doi.org/10.1021/jm00014a032.

      [5] Won SJ, Liu CT, Tsao LT, Weng JR, Ko HH, Wang JP & Lin CN (2005), Synthetic chalcones as potential anti-inflammatory and cancer chemopreventive agents. European Journal of Medicinal Chemistry 40(1), 103-112. https://doi.org/10.1016/j.ejmech.2004.09.006.

      [6] Kumar SK, Hager E, Pettit C, Gurulingappa H, Davidson NE & Khan SR (2003), Design, synthesis, and evaluation of novel boronic-chalcone derivatives as antitumor agents. Journal of Medicinal Chemistry 46(14), 2813-2815. https://doi.org/10.1021/jm030213.

      [7] Domínguez JN, León C, Rodrigues J, De Domínguez NG, Gut J & Rosenthal PJ (2005), Synthesis and antimalarial activity of sulfonamide chalcone derivatives. Il Farmaco 60, 307-311. https://doi.org/10.1016/j.farmac.2005.01.005.

      [8] Awasthi SK, Mishra N, Kumar B, Sharma M, Bhattacharya A, Mishra LC & Bhasin VK (2009), Potent antimalarial activity of newly synthesized substituted chalcone analogs in vitro. Medicinal Chemistry Research 18(6), 407-420. https://doi.org/10.1007/s00044-008-9137-9.

      [9] Rao YK, Fang SH & Tzeng YM (2009), Synthesis and biological evaluation of 3′, 4′, 5′-trimethoxychalcone analogues as inhibitors of nitric oxide production and tumor cell proliferation. Bioorganic & Medicinal Chemistry 17(23), 7909-7914. https://doi.org/10.1016/j.bmc.2009.10.022.

      [10] Reddy MVB, Shen YC, Ohkoshi E, Bastow KF, Qian K, Lee KH & Wu TS (2012), Bis-chalcone analogues as potent NO production inhibitors and as cytotoxic agents. European Journal of Medicinal Chemistry 47, 97-103. https://doi.org/10.1016/j.ejmech.2011.10.026.

      [11] Zhao LM, Jin SH, Sun LP, Piao HR & Quan ZS (2005), Synthesis and evaluation of antiplatelet activity of trihydroxychalcone derivatives. Bioorganic & Medicinal Chemistry Letters 15(22), 5027-5029. https://doi.org/10.1016/j.bmcl.2005.08.039.

      [12] Aponte JC, Castillo D, Estevez Y, Gonzalez G, Arevalo J, Hammond GB & Sauvain M (2010), In vitro and in vivo anti-Leishmania activity of polysubstituted synthetic chalcones. Bioorganic & Medicinal Chemistry Letters 20(1), 100-103. https://doi.org/10.1016/j.bmcl.2009.11.033.

      [13] Biradar JS, Sasidhar BS & Parveen R (2010). Synthesis, antioxidant and DNA cleavage activities of novel indole derivatives. European Journal of Medicinal Chemistry 45, 4074-4078. https://doi.org/10.1016/j.ejmech.2010.05.067.

      [14] Mizuno CS, Paul S, Suh N & Rimando AM (2010), Synthesis and biological evaluation of retinoid-chalcones as inhibitors of colon cancer cell growth. Bioorganic & Medicinal Chemistry Letters 20(24), 7385-7387. https://doi.org/10.1016/j.bmcl.2010.10.038.

      [15] Nabi G & Liu ZQ (2011), Radical-scavenging properties of ferrocenyl chalcones. Bioorganic & Medicinal Chemistry Letters 21(3), 944-946. https://doi.org/10.1016/j.bmcl.2010.12.051.

      [16] Shukla P, Srivastava SP, Srivastava R, Rawat AK, Srivastava AK & Pratap R (2011), Synthesis and antidyslipidemic activity of chalcone fibrates. Bioorganic & Medicinal Chemistry Letters 21(11), 3475-3478. https://doi.org/10.1016/j.bmcl.2011.03.057.

      [17] Hsieh CT, Hsieh TJ, El-Shazly M, Chuang DW, Tsai YH, Yen CT, Wu SF, Wu YC & Chang FR (2012), Synthesis of chalcone derivatives as potential anti-diabetic agents. Bioorganic & Medicinal Chemistry Letters 22(12), 3912-3915 https://doi.org/10.1016/j.bmcl.2012.04.108.

      [18] Dong X, Du L, Pan Z, Liu T, Yang B & Hu Y (2010), Synthesis and biological evaluation of novel hybrid chalcone derivatives as vasorelaxant agents. European Journal of Medicinal Chemistry 45(9), 3986-3992. . https://doi.org/10.1016/j.ejmech.2010.05.054.

      [19] Hayat F, Moseley E, Salahuddin A, Van Zyl RL & Azam A (2011), antiprotozoal activity of chloroquinoline based chalcones. European Journal of Medicinal Chemistry 46(5) 1897-1905. https://doi.org/10.1016/j.ejmech.2011.02.004.

      [20] Shettigar S, Umesh G, Chandrasekharan K & Sarojini BK (2008), Studies on third-order nonlinear optical properties of chalcone derivatives in polymer host. Optical Materials 30(8), 1297-1303. https://doi.org/10.1016/j.optmat.2007.06.008.

      [21] Asiri AM, Marwani HM, Alamry KA, Al-Amoudi MS, Khan SA & El-Daly SA (2014), Green Synthesis, Characterization, Photophysical and Electrochemical Properties of Bis-chalcones. International Journal of Electrochemical Science 9, 799-809.

      [22] Shettigar S, Chandrasekharan K, Umesh G & Sarojini BK (2006), Studies on nonlinear optical parameters of bis-chalcone derivatives doped polymer. Polymer 47(10) 3565-3567. https://doi.org/10.1016/j.polymer.2006.03.062.

      [23] Delavaux-Nicot B, Maynadié J & Lavabre D (2007), Ca2+ vs. Ba2+ electrochemical detection by two disubstituted ferrocenyl chalcone chemosensors. Study of the ligand–metal interactions in CH3CN. Journal of Organometallic Chemistry 692(4), 874-886. https://doi.org/10.1016/j.jorganchem.2006.10.045.

      [24] Gasull EI, Blanco SE & Ferretti FH (2002), a theoretical and experimental study of adsorption from dilute cyclohexane solutions of non-electrolytes: 4-X-chalcones on silica gel. Journal of Molecular Structure: THEOCHEM 579(1-3), 121-137. https://doi.org/10.1016/S0166-1280(01)00723-0.

      [25] Goto Y, Hayashi A, Kimura Y & Nakayama M (1991), Second harmonic generation and crystal growth of substituted thienyl chalcone. Journal of Crystal Growth 108(3-4), 688-698. https://doi.org/10.1016/0022-0248(91)90249-5.

      [26] Frisch MJ, et al., (2009), Gaussian 09, Revision B.01, Gaussian Inc., Wallingford CT.

      [27] Becke AD (1993), Density-functional thermochemistry. III. The role of exact exchange. The Journal of Chemical Physics 98(7), 5648-5652. https://doi.org/10.1063/1.464913.

      [28] Lee C, Yang W & Parr RG (1988), Development of the Colle-Salvetti correlation energy formula into a functional of the electron density. Physical Review B 37 (2), 785-789. https://doi.org/10.1103/PhysRevB.37.785.

      [29] Heyd J & Scuseria GE (2004), efficient hybrid density functional calculations in solids: Assessment of the Heyd–Scuseria–Ernzerhof screened Coulomb hybrid functional. The Journal of Chemical Physics 121, 1187. https://doi.org/10.1063/1.1760074.

      [30] Heyd J & Scuseria G E (2004), Assessment and validation of a screened Coulomb hybrid density functional. The Journal of Chemical Physics 120, 7274. https://doi.org/10.1063/1.1668634.

      [31] Frisch E, Hratchian HP, Dennington II RD, Keith TA, Millam J, Nielsen B, Holder AJ & Hiscocks J (2009), Gaussian, Inc. GaussView Version 5.0.8, Wallinford, CT.

      [32] Jamroz MH (2004), Vibrational Energy Distribution Analysis: VEDA 4 Program, Warsaw, Poland.

      [33] Glendening ED, Reed AE, Carpenter JE & Weinhold F (1998), NBO Version3.1, TCI, University of Wisconsin, Madison.

      [34] Foster JP & Weinhold F (1980), Natural hybrid orbitals. Journal of the American Chemical Society 102(24), 7211-7218. https://doi.org/10.1021/ja00544a007.

      [35] Reed AE & Weinhold F (1983), Natural bond orbital analysis of near–Hartree–Fock water dimer. The Journal of Chemical Physics 78, 4066-4073. https://doi.org/10.1063/1.445134.

      [36] Reed AE & Weinhold F (1985), Natural localized molecular orbitals. The Journal of Chemical Physics 83, 1736-1740. https://doi.org/10.1063/1.449360.

      [37] Reed AE, Weinstock RB & Weinhold F (1985), Natural population analysis. The Journal of Chemical Physics 83, 735–746. https://doi.org/10.1063/1.449486.

      [38] Reed AE, Curtiss LA & Weinhold F (1988), Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chemical Reviews 88(6), 899-926.

      https://doi.org/10.1021/cr00088a005.

      [39] Szafran M, Komasa a & Bartoszak-Adamska E (2007), Crystal and molecular structure of 4-carboxypiperidinium chloride (4-piperidinecarboxylic acid hydrochloride). Journal of Molecular Structure 827(1-3), 101-107. https://doi.org/10.1016/j.molstruc.2006.05.012.

      [40] Sebastian S & Sundaraganesan N (2010), the spectroscopic (FT-IR, FT-IR gas phase, FT-Raman and UV) and NBO analysis of 4-Hydroxypiperidine by density functional method. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 75(3), 941-952. https://doi.org/10.1016/j.saa.2009.11.030.

      [41] Tamer Ö, Avcı D & Atalay Y (2015), Synthesis, X-ray structure, spectroscopic characterization and nonlinear optical properties of Nickel (II) complex with picolinate: A combined experimental and theoretical study. Journal of Molecular Structure 1098, 12-20. https://doi.org/10.1016/j.molstruc.2015.05.035.

      [42] Altürk S, Tamer Ö, Avcı D & Atalay Y (2015), Synthesis, spectroscopic characterization, second and third-order nonlinear optical properties, and DFT calculations of a novel Mn(II) complex. Journal of Organometallic Chemistry 797, 110-119. https://doi.org/10.1016/j.jorganchem.2015.08.014.

      [43] Stratmann RE, Scuseria GE & Frisch MJ (1998), an efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules. The Journal of Chemical Physics 109, 8218-8224. https://doi.org/10.1063/1.477483.

      [44] Cancès E, Mennucci B & Tomasi J (1997), a new integral equation formalism for the polarizable continuum model: Theoretical background and applications to isotropic and anisotropic dielectrics. The Journal of Chemical Physics 107, 3032-3041. https://doi.org/10.1063/1.474659.

      [45] O'Boyle NM, Tenderholt AL & Langner KM (2008), cclib: a library for package-independent computational chemistry algorithms. Journal of Computational Chemistry 29(5), 839–845. https://doi.org/10.1002/jcc.20823.

      [46] Ferreira MMC (1993), Population analysis from atomic polar tensors. Journal of Molecular Structure 294, 75–78. https://doi.org/10.1016/0022-2860(93)80318-P.

      [47] Parr RG, Szentpály LV & Liu S (1999), Electrophilicity Index. Journal of the American Chemical Society 121(9), 1922-1924. https://doi.org/10.1021/ja983494x.

      [48] Chattaraj P.K., Maiti B & Sarkar U (2003), Philicity: A Unified Treatment of Chemical Reactivity and Selectivity. Journal of Physical Chemistry a 107, 4973-4975. https://doi.org/10.1021/jp034707u.

      [49] Parr RG, Donnelly RA, Levy M & Palke WE (1978), Electronegativity: the density functional viewpoint. Journal of Chemical Physics 68(8), 3801-3807. https://doi.org/10.1063/1.436185.

      [50] Parr RG & Pearson RG (1983), Absolute hardness: companion parameter to absolute electronegativity. Journal of the American Chemical Society 105(26), 7512-7516. https://doi.org/10.1021/ja00364a005.

      [51] Pearson RG (2005), Chemical hardness and density functional theory. Journal of Chemical Sciences 117(5), 369-377. https://doi.org/10.1007/BF02708340.

      [52] Alwani Zainuri D, Arshad S, Che Khalib N, Abdul Razak I, Raveendran Pillai R, Farizaa Sulaiman S, Shafiqah Hashim N, Leong Ooi K, Armaković S, Armaković SJ, Yohannan Panicker C & Van Alsenoy C (2017), Synthesis, XRD crystal structure, spectroscopic characterization (FT-IR, 1H and 13C NMR), DFT studies, chemical reactivity and bond dissociation energy studies using molecular dynamics simulations and evaluation of antimicrobial and antioxidant activities of a novel chalcone derivative, (E)-1-(4-bromophenyl)-3-(4-iodophenyl)prop-2-en-1-one. Journal of Molecular Structure 1128, 520-533. https://doi.org/10.1016/j.molstruc.2016.09.022.

      [53] Samshuddin S, Butcher RJ, Akkurt M, Narayana B, Sarojini BK & Yathirajan HS (2012), (1E,4E)-1-(3-Nitro-phen-yl)-5-phenyl-penta-1,4-dien-3-one. Acta Crystallographica Section E 68, o74-o75. https://doi.org/10.1107/S1600536811052548.

      [54] Rastogi VK, Palafox MA, Tanwar RP & Mittal L (2002), 3, 5-Difluorobenzonitrile: ab initio calculations, FTIR and Raman spectra. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 58(9), 1987-2004. https://doi.org/10.1016/S1386-1425(01)00650-3.

      [55] Silverstein M, Basseler GC & Morill C (1981), Spectrometric Identification of Organic Compounds, Wiley, New York.

      [56] Wade LG (1992), Advanced Organic Chemistry, fourth ed., Wiley, New York.

      [57] Roeges NPG (1994), a Guide to the Complete Interpretation of IR Spectra of Organic Compounds, Wiley, New York.

      [58] Clothup NB, Daly LH & Wiberly SE (1990), Introduction to IR and Raman Spectroscopy, Academic Press, New York.

      [59] Socrates G (1981), Infrared Characteristic Group Frequencies, John Wiley and Sons, New York.

      [60] Meislich EK, Meislich H & Sharefkin J (1993), 3000 Solved Problems in Organic Chemistry, vol. 2, McGraw–Hill, New York.

  • Downloads

  • How to Cite

    Benhalima, N., Yahiaoui, S., Boubegra, N., Boulakoud, M., Megrouss, Y., Chouaih, A., & Hamzaoui, F. (2018). Quantum chemical investigation of spectroscopic, electronic and NLO properties of (1E, 4E)-1-(3-nitrophenyl)-5-phenylpenta-1,4-dien-3-one. International Journal of Advanced Chemistry, 6(1), 121-131. https://doi.org/10.14419/ijac.v6i1.11795