Vibrational biospectroscopic study and chemical structure analysis of unsaturated polyamides nanoparticles as anti–cancer polymeric nanomedicines using synchrotron radiation

Authors

  • Alireza Heidari Faculty of Chemistry, California South University (CSU), Irvine, California, USA

DOI:

https://doi.org/10.14419/ijac.v6i2.12528

Published:

2018-08-04

Keywords:

Unsaturated Polyamides Nanoparticles, Attenuated Total Reflection–Fourier Transform Infrared (ATR–FTIR) Spectroscopy, Carbon–Carbon Double Bond, Hardening–Cross Link, Cross Link, Raman Spectroscopy, Anti–Cancer Polymeric Nanomedicines, Synchrotron Radiati

Abstract

Firstly, unsaturated polyamides nanoparticles were hardened by continuous synchrotron radiation and then, the induced changes in its chemical structure were studied by Attenuated Total Reflection–Fourier Transform Infrared (ATR–FTIR) spectroscopy. It was shown that applying synchrotron radiation for hardening not only leads to reduction of hardening time but also creates cross link in polymer by breaking Carbon–Carbon double bond, without any considerable change in its chemical structure. In addition, an unsaturated polyamide nanoparticle as anti–cancer polymeric nanomedicines is hardened by synchrotron radiation. Its chemical structure before and after hardening is studied using Raman and Attenuated Total Reflection–Fourier Transform Infrared (ATR–FTIR) spectroscopy. The results show that Raman spectroscopy is considerably better than Attenuated Total Reflection–Fourier Transform Infrared (ATR–FTIR) spectroscopy in detecting the changes happened in chemical structure.

 

 

References

[1] Heidari, A., Brown, C. (2015). Study of Composition and Morphology of Cadmium Oxide (CdO) Nanoparticles for Eliminating Cancer Cells, Journal of Nanomedicine Research, Volume 2, Issue 5, 20 Pages.

[2] Heidari, A., Brown, C. (2015). Study of Surface Morphological, Phytochemical and Structural Characteristics of Rhodium (III) Oxide (Rh2O3) Nanoparticles, International Journal of Pharmacology, Phytochemistry and Ethnomedicine, Volume 1, Pages 15–19. https://doi.org/10.18052/www.scipress.com/IJPPE.1.15.

[3] Heidari, A. (2016). An Experimental Biospectroscopic Study on Seminal Plasma in Determination of Semen Quality for Evaluation of Male Infertility, Int J Adv Technol 7: e007. https://doi.org/10.4172/0976-4860.1000e007.

[4] Heidari, A. (2016). Extraction and Preconcentration of N–Tolyl–Sulfonyl–Phosphoramid–Saeure–Dichlorid as an Anti–Cancer Drug from Plants: A Pharmacognosy Study, J Pharmacogn Nat Prod 2: e103. https://doi.org/10.4172/2472-0992.1000e103.

[5] Heidari, A. (2016). A Thermodynamic Study on Hydration and Dehydration of DNA and RNA−Amphiphile Complexes, J Bioeng Biomed Sci S: 006.

[6] Heidari, A. (2016). Computational Studies on Molecular Structures and Carbonyl and Ketene Groups’ Effects of Singlet and Triplet Energies of Azidoketene O=C=CH–NNN and Isocyanatoketene O=C=CH–N=C=O, J Appl Computat Math 5: e142.

[7] Heidari, A. (2016). Study of Irradiations to Enhance the Induces the Dissociation of Hydrogen Bonds between Peptide Chains and Transition from Helix Structure to Random Coil Structure Using ATR–FTIR, Raman and 1HNMR Spectroscopies, J Biomol Res Ther 5: e146. https://doi.org/10.4172/2167-7956.1000e146.

[8] Heidari, A. (2016). Future Prospects of Point Fluorescence Spectroscopy, Fluorescence Imaging and Fluorescence Endoscopy in Photodynamic Therapy (PDT) for Cancer Cells, J Bioanal Biomed 8: e135. https://doi.org/10.4172/1948-593X.1000e135.

[9] Heidari, A. (2016). A Bio–Spectroscopic Study of DNA Density and Color Role as Determining Factor for Absorbed Irradiation in Cancer Cells, Adv Cancer Prev 1: e102. https://doi.org/10.4172/2472-0429.1000e102.

[10] Heidari, A. (2016). Manufacturing Process of Solar Cells Using Cadmium Oxide (CdO) and Rhodium (III) Oxide (Rh2O3) Nanoparticles, J Biotechnol Biomater 6: e125. https://doi.org/10.4172/2155-952X.1000e125.

[11] Heidari, A. (2016). a Novel Experimental and Computational Approach to Photobiosimulation of Telomeric DNA/RNA: A Biospectroscopic and Photobiological Study, J Res Development 4: 144.

[12] Heidari, A. (2016). Biochemical and Pharmacodynamical Study of Microporous Molecularly Imprinted Polymer Selective for Vancomycin, Teicoplanin, Oritavancin, Telavancin and Dalbavancin Binding, Biochem Physiol 5: e146. https://doi.org/10.4172/2168-9652.1000e146.

[13] Heidari, A. (2016). Anti–Cancer Effect of UV Irradiation at Presence of Cadmium Oxide (CdO) Nanoparticles on DNA of Cancer Cells: A Photodynamic Therapy Study, Arch Cancer Res. 4: 1. https://doi.org/10.21767/2254-6081.100061.

[14] Heidari, A. (2016). Biospectroscopic Study on Multi–Component Reactions (MCRs) in Two A–Type and B–Type Conformations of Nucleic Acids to Determine Ligand Binding Modes, Binding Constant and Stability of Nucleic Acids in Cadmium Oxide (CdO) Nanoparticles–Nucleic Acids Complexes as Anti–Cancer Drugs, Arch Cancer Res. 4: 2. https://doi.org/10.21767/2254-6081.100065.

[15] Heidari, A. (2016). Simulation of Temperature Distribution of DNA/RNA of Human Cancer Cells Using Time–Dependent Bio–Heat Equation and Nd: YAG Lasers, Arch Cancer Res. 4: 2. https://doi.org/10.21767/2254-6081.100069.

[16] Heidari, A. (2016). Quantitative Structure–Activity Relationship (QSAR) Approximation for Cadmium Oxide (CdO) and Rhodium (III) Oxide (Rh2O3) Nanoparticles as Anti–Cancer Drugs for the Catalytic Formation of Proviral DNA from Viral RNA Using Multiple Linear and Non–Linear Correlation Approach, Ann Clin Lab Res. 4: 1. https://doi.org/10.21767/2386-5180.100076.

[17] Heidari, A. (2016). Biomedical Study of Cancer Cells DNA Therapy Using Laser Irradiations at Presence of Intelligent Nanoparticles, J Biomedical Sci. 5: 2. https://doi.org/10.4172/2254-609X.100023.

[18] Heidari, A. (2016). Measurement the Amount of Vitamin D2 (Ergocalciferol), Vitamin D3 (Cholecalciferol) and Absorbable Calcium (Ca2+), Iron (II) (Fe2+), Magnesium (Mg2+), Phosphate (PO4–) and Zinc (Zn2+) in Apricot Using High–Performance Liquid Chromatography (HPLC) and Spectroscopic Techniques, J Biom Biostat 7: 292. https://doi.org/10.4172/2155-6180.1000292.

[19] Heidari, A. Spectroscopy and Quantum Mechanics of the Helium Dimer (He2+), Neon Dimer (Ne2+), Argon Dimer (Ar2+), Krypton Dimer (Kr2+), Xenon Dimer (Xe2+), Radon Dimer(Rn2+) and Ununoctium Dimer (Uuo2+) Molecular Cations, Chem Sci J 7: e112, 2016. https://doi.org/10.4172/2150-3494.1000e112.

[20] Heidari, A. (2016). Human Toxicity Photodynamic Therapy Studies on DNA/RNA Complexes as a Promising New Sensitizer for the Treatment of Malignant Tumors Using Bio–Spectroscopic Techniques, J Drug Metab Toxicol 7: e129. https://doi.org/10.4172/2157-7609.1000e129.

[21] Heidari, A. (2016). Novel and Stable Modifications of Intelligent Cadmium Oxide (CdO) Nanoparticles as Anti–Cancer Drug in Formation of Nucleic Acids Complexes for Human Cancer Cells’ Treatment, Biochem Pharmacol (Los Angel) 5: 207. https://doi.org/10.4172/2167-0501.1000207.

[22] Heidari, A. (2016). A Combined Computational and QM/MM Molecular Dynamics Study on Boron Nitride Nanotubes (BNNTs), Amorphous Boron Nitride Nanotubes (a–BNNTs) and Hexagonal Boron Nitride Nanotubes (h–BNNTs) as Hydrogen Storage, Struct Chem Crystallogr Commun 2: 1.

[23] Heidari, A. (2016). Pharmaceutical and Analytical Chemistry Study of Cadmium Oxide (CdO) Nanoparticles Synthesis Methods and Properties as Anti–Cancer Drug and its Effect on Human Cancer Cells, Pharm Anal Chem Open Access 2: 113.

[24] Heidari, A. (2016). A Chemotherapeutic and Biospectroscopic Investigation of the Interaction of Double–Standard DNA/RNA–Binding Molecules with Cadmium Oxide (CdO) and Rhodium (III) Oxide (Rh2O3) Nanoparticles as Anti–Cancer Drugs for Cancer Cells’ Treatment, Chemo Open Access 5: e129.

[25] Heidari, A. (2016). Pharmacokinetics and Experimental Therapeutic Study of DNA and Other Biomolecules Using Lasers: Advantages and Applications, J Pharmacokinet Exp Ther 1: e005.

[26] Heidari, A. (2016). Determination of Ratio and Stability Constant of DNA/RNA in Human Cancer Cells and Cadmium Oxide (CdO) Nanoparticles Complexes Using Analytical Electrochemical and Spectroscopic Techniques, Insights Anal Electrochem 2: 1.

[27] Heidari, A. (2016). Discriminate between Antibacterial and Non–Antibacterial Drugs Artificial Neutral Networks of a Multilayer Perceptron (MLP) Type Using a Set of Topological Descriptors, J Heavy Met Toxicity Dis. 1: 2. https://doi.org/10.21767/2473-6457.100009.

[28] Heidari, A. (2016). Combined Theoretical and Computational Study of the Belousov–Zhabotinsky Chaotic Reaction and Curtius Rearrangement for Synthesis of Mechlorethamine, Cisplatin, Streptozotocin, Cyclophosphamide, Melphalan, Busulphan and BCNU as Anti–Cancer Drugs, Insights Med Phys. 1: 2.

[29] Heidari, A. (2016). a Translational Biomedical Approach to Structural Arrangement of Amino Acids’ Complexes: A Combined Theoretical and Computational Study, Transl Biomed. 7: 2. https://doi.org/10.21767/2172-0479.100072.

[30] Heidari, A. (2016). Ab Initio and Density Functional Theory (DFT) Studies of Dynamic NMR Shielding Tensors and Vibrational Frequencies of DNA/RNA and Cadmium Oxide (CdO) Nanoparticles Complexes in Human Cancer Cells, J Nanomedine Biotherapeutic Discov 6: e144.

[31] Heidari, A. (2016). Molecular Dynamics and Monte–Carlo Simulations for Replacement Sugars in Insulin Resistance, Obesity, LDL Cholesterol, Triglycerides, Metabolic Syndrome, Type 2 Diabetes and Cardiovascular Disease: A Glycobiological Study, J Glycobiol 5: e111. https://doi.org/10.4172/2168-958X.1000e111.

[32] Heidari, A. (2016). Synthesis and Study of 5–[(Phenylsulfonyl) Amino]–1, 3, 4–Thiadiazole–2–Sulfonamide as Potential Anti–Pertussis Drug Using Chromatography and Spectroscopy Techniques, Transl Med (Sunnyvale) 6: e138. https://doi.org/10.4172/2161-1025.1000e137.

[33] Heidari, A. (2016). Nitrogen, Oxygen, Phosphorus and Sulphur Heterocyclic Anti–Cancer Nano Drugs Separation in the Supercritical Fluid of Ozone (O3) Using Soave–Redlich–Kwong (SRK) and Pang–Robinson (PR) Equations, Electronic J Biol 12: 4.

[34] Heidari, A. (2016). an Analytical and Computational Infrared Spectroscopic Review of Vibrational Modes in Nucleic Acids, Austin J Anal Pharm Chem. 3(1): 1058.

[35] Heidari, A., Brown, C. (2016). Phase, Composition and Morphology Study and Analysis of Os–Pd/HfC Nanocomposites, Nano Res Appl. 2: 1.

[36] Heidari, A., Brown, C. (2016). Vibrational Spectroscopic Study of Intensities and Shifts of Symmetric Vibration Modes of Ozone Diluted by Cumene, International Journal of Advanced Chemistry, 4 (1) 5–9. https://doi.org/10.14419/ijac.v4i1.6080.

[37] Heidari, A. (2016). Study of the Role of Anti–Cancer Molecules with Different Sizes for Decreasing Corresponding Bulk Tumor Multiple Organs or Tissues, Arch Can Res. 4: 2. https://doi.org/10.21767/2254-6081.100083.

[38] Heidari, A. (2016). Genomics and Proteomics Studies of Zolpidem, Necopidem, Alpidem, Saripidem, Miroprofen, Zolimidine, Olprinone and Abafungin as Anti–Tumor, Peptide Antibiotics, Antiviral and Central Nervous System (CNS) Drugs, J Data Mining Genomics & Proteomics 7: e125. https://doi.org/10.4172/2153-0602.1000e125.

[39] Heidari, A. (2016). Pharmacogenomics and Pharmacoproteomics Studies of Phosphodiesterase–5 (PDE5) Inhibitors and Paclitaxel Albumin–Stabilized Nanoparticles as Sandwiched Anti–Cancer Nano Drugs between Two DNA/RNA Molecules of Human Cancer Cells, J Pharmacogenomics Pharmacoproteomics 7: e153. https://doi.org/10.4172/2153-0645.1000e153.

[40] Heidari, A. (2016). Biotranslational Medical and Biospectroscopic Studies of Cadmium Oxide (CdO) Nanoparticles–DNA/RNA Straight and Cycle Chain Complexes as Potent Anti–Viral, Anti–Tumor and Anti–Microbial Drugs: A Clinical Approach, Transl Biomed. 7: 2. https://doi.org/10.21767/2172-0479.100076.

[41] Heidari, A. (2016). A Comparative Study on Simultaneous Determination and Separation of Adsorbed Cadmium Oxide (CdO) Nanoparticles on DNA/RNA of Human Cancer Cells Using Biospectroscopic Techniques and Dielectrophoresis (DEP) Method, Arch Can Res. 4: 2. https://doi.org/10.21767/2254-6081.100086.

[42] Heidari, A. (2016). Cheminformatics and System Chemistry of Cisplatin, Carboplatin, Nedaplatin, Oxaliplatin, Heptaplatin and Lobaplatin as Anti–Cancer Nano Drugs: A Combined Computational and Experimental Study, J Inform Data Min 1: 3. https://doi.org/10.21767/2472-1956.100015.

[43] Heidari, A. (2016). Linear and Non–Linear Quantitative Structure–Anti–Cancer–Activity Relationship (QSACAR) Study of Hydrous Ruthenium (IV) Oxide (RuO2) Nanoparticles as Non–Nucleoside Reverse Transcriptase Inhibitors (NNRTIs) and Anti–Cancer Nano Drugs, J Integr Oncol 5: e110.

[44] Heidari, A. (2016). Synthesis, Characterization and Biospectroscopic Studies of Cadmium Oxide (CdO) Nanoparticles–Nucleic Acids Complexes Absence of Soluble Polymer as a Protective Agent Using Nucleic Acids Condensation and Solution Reduction Method, J Nanosci Curr Res 1: e101.

[45] Heidari, A. (2016). Coplanarity and Collinearity of 4’–Dinonyl–2,2’–Bithiazole in One Domain of Bleomycin and Pingyangmycin to be Responsible for Binding of Cadmium Oxide (CdO) Nanoparticles to DNA/RNA Bidentate Ligands as Anti–Tumor Nano Drug, Int J Drug Dev & Res 8: 007–008.

[46] Heidari, A. (2016). A Pharmacovigilance Study on Linear and Non–Linear Quantitative Structure (Chromatographic) Retention Relationships (QSRR) Models for the Prediction of Retention Time of Anti–Cancer Nano Drugs under Synchrotron Radiations, J Pharmacovigil 4: e161. https://doi.org/10.4172/2329-6887.1000e161.

[47] Heidari, A. (2016). Nanotechnology in Preparation of Semipermeable Polymers, J Adv Chem Eng 6: 157. https://doi.org/10.4172/2090-4568.1000e108.

[48] Heidari, A. (2016). A Gastrointestinal Study on Linear and Non–Linear Quantitative Structure (Chromatographic) Retention Relationships (QSRR) Models for Analysis 5–Aminosalicylates Nano Particles as Digestive System Nano Drugs under Synchrotron Radiations, J Gastrointest Dig Syst 6: e119. https://doi.org/10.4172/2161-069X.1000e119.

[49] Heidari, A. (2016). DNA/RNA Fragmentation and Cytolysis in Human Cancer Cells Treated with Diphthamide Nano Particles Derivatives, Biomedical Data Mining 5: e102. https://doi.org/10.4172/2090-4924.1000e102.

[50] Heidari, A. (2016). A Successful Strategy for the Prediction of Solubility in the Construction of Quantitative Structure–Activity Relationship (QSAR) and Quantitative Structure–Property Relationship (QSPR) under Synchrotron Radiations Using Genetic Function Approximation (GFA) Algorithm, J Mol Biol Biotechnol 1: 1.

[51] Heidari, A. (2016). Computational Study on Molecular Structures of C20, C60, C240, C540, C960, C2160 and C3840 Fullerene Nano Molecules under Synchrotron Radiations Using Fuzzy Logic, J Material Sci Eng 5: 282. https://doi.org/10.4172/2169-0022.1000282.

[52] Heidari, A. (2016). Graph Theoretical Analysis of Zigzag Polyhexamethylene Biguanide, Polyhexamethylene Adipamide, Polyhexamethylene Biguanide Gauze and Polyhexamethylene Biguanide Hydrochloride (PHMB) Boron Nitride Nanotubes (BNNTs), Amorphous Boron Nitride Nanotubes (a–BNNTs) and Hexagonal Boron Nitride Nanotubes (h–BNNTs), J Appl Computat Math 5: e143. https://doi.org/10.4172/2168-9679.1000e143.

[53] Heidari, A. (2016). The Impact of High Resolution Imaging on Diagnosis, Int J Clin Med Imaging 3: 1000e101.

[54] Heidari, A. (2016). A Comparative Study of Conformational Behavior of Isotretinoin (13–Cis Retinoic Acid) and Tretinoin (All–Trans Retinoic Acid (ATRA)) Nano Particles as Anti–Cancer Nano Drugs under Synchrotron Radiations Using Hartree–Fock (HF) and Density Functional Theory (DFT) Methods, Insights in Biomed 1: 2.

[55] Heidari, A. (2016). Advances in Logic, Operations and Computational Mathematics, J Appl Computat Math 5: 5. https://doi.org/10.4172/2168-9679.1000e144.

[56] Heidari, A. (2016). Mathematical Equations in Predicting Physical Behavior, J Appl Computat Math 5: 5. https://doi.org/10.4172/2168-9679.1000e145.

[57] Heidari, A. (2016). Chemotherapy a Last Resort for Cancer Treatment, Chemo Open Access 5: 4. https://doi.org/10.4172/2167-7700.1000e130.

[58] Heidari, A. (2016). Separation and Pre–Concentration of Metal Cations–DNA/RNA Chelates Using Molecular Beam Mass Spectrometry with Tunable Vacuum Ultraviolet (VUV) Synchrotron Radiation and Various Analytical Methods, Mass Spectrom Purif Tech 2: e101. https://doi.org/10.4172/2469-9861.1000e101.

[59] Heidari, A. (2016). Yoctosecond Quantitative Structure–Activity Relationship (QSAR) and Quantitative Structure–Property Relationship (QSPR) under Synchrotron Radiations Studies for Prediction of Solubility of Anti–Cancer Nano Drugs in Aqueous Solutions Using Genetic Function Approximation (GFA) Algorithm, Insight Pharm Res. 1: 1.

[60] Heidari, A. (2016). Cancer Risk Prediction and Assessment in Human Cells under Synchrotron Radiations Using Quantitative Structure Activity Relationship (QSAR) and Quantitative Structure Properties Relationship (QSPR) Studies, Int J Clin Med Imaging 3: 516. https://doi.org/10.4172/2376-0249.1000516.

[61] Heidari, A. (2016). A Novel Approach to Biology, Electronic J Biol 12: 4.

[62] Heidari, A. (2016). Innovative Biomedical Equipment’s for Diagnosis and Treatment, J Bioengineer & Biomedical Sci 6: 2. https://doi.org/10.4172/2155-9538.1000e124.

[63] Heidari, A. (2016). Integrating Precision Cancer Medicine into Healthcare, Medicare Reimbursement Changes and the Practice of Oncology: Trends in Oncology Medicine and Practices, J Oncol Med & Pract 1: 2.

[64] Heidari, A. (2016). Promoting Convergence in Biomedical and Biomaterials Sciences and Silk Proteins for Biomedical and Biomaterials Applications: An Introduction to Materials in Medicine and Bioengineering Perspectives, J Bioengineer & Biomedical Sci 6: 3. https://doi.org/10.4172/2155-9538.1000e126.

[65] Heidari, A. (2017). X–Ray Fluorescence and X–Ray Diffraction Analysis on Discrete Element Modeling of Nano Powder Metallurgy Processes in Optimal Container Design, J Powder Metall Min 6: 1.

[66] Heidari, A. (2017). Biomolecular Spectroscopy and Dynamics of Nano–Sized Molecules and Clusters as Cross–Linking–Induced Anti–Cancer and Immune–Oncology Nano Drugs Delivery in DNA/RNA of Human Cancer Cells’ Membranes under Synchrotron Radiations: A Payload–Based Perspective, Arch Chem Res. 1: 2. https://doi.org/10.21767/2572-4657.100011.

[67] Heidari, A. (2017). Deficiencies in Repair of Double–Standard DNA/RNA–Binding Molecules Identified in Many Types of Solid and Liquid Tumors Oncology in Human Body for Advancing Cancer Immunotherapy Using Computer Simulations and Data Analysis, J Appl Bioinforma Comput Biol, 6: 1. https://doi.org/10.4172/2329-9533.1000e104.

[68] Heidari, A. (2017). Electronic Coupling among the Five Nanomolecules Shuts Down Quantum Tunneling in the Presence and Absence of an Applied Magnetic Field for Indication of the Dimer or other Provide Different Influences on the Magnetic Behavior of Single Molecular Magnets (SMMs) as Qubits for Quantum Computing, Glob J Res Rev. 4: 2. https://doi.org/10.21767/2393-8854.100019.

[69] Heidari, A. (2017). Polymorphism in Nano–Sized Graphene Ligand–Induced Transformation of Au38–xAgx/xCux(SPh–tBu)24 to Au36–xAgx/xCux(SPh–tBu)24 (x = 1–12) Nanomolecules for Synthesis of Au144–xAgx/xCux[(SR)60, (SC4)60, (SC6)60, (SC12)60, (PET)60, (p–MBA)60, (F)60, (Cl)60, (Br)60, (I)60, (At)60, (Uus)60 and (SC6H13)60] Nano Clusters as Anti–Cancer Nano Drugs, J Nanomater Mol Nanotechnol, 6: 3. https://doi.org/10.4172/2324-8777.1000109e.

[70] Heidari, A. (2017). Biomedical Resource Oncology and Data Mining to Enable Resource Discovery in Medical, Medicinal, Clinical, Pharmaceutical, Chemical and Translational Research and Their Applications in Cancer Research, Int J Biomed Data Min 6: e103. https://doi.org/10.4172/2090-4924.1000e103.

[71] Heidari, A. (2017). Study of Synthesis, Pharmacokinetics, Pharmacodynamics, Dosing, Stability, Safety and Efficacy of Olympiadane Nanomolecules as Agent forCancer Enzymotherapy, Immunotherapy, Chemotherapy, Radiotherapy, Hormone Therapy and Targeted Therapy under Synchrotorn Radiation, J Dev Drugs 6: e154. https://doi.org/10.4172/2329-6631.1000e154.

[72] Heidari, A. (2017). A Novel Approach to Future Horizon of Top Seven Biomedical Research Topics to Watch in 2017: Alzheimer's, Ebola, Hypersomnia, Human Immunodeficiency Virus (HIV), Tuberculosis (TB), Microbiome/Antibiotic Resistance and Endovascular Stroke, J Bioengineer & Biomedical Sci 7: e127. https://doi.org/10.4172/2155-9538.1000e127.

[73] Heidari, A. (2017). Opinion on Computational Fluid Dynamics (CFD) Technique, Fluid Mech Open Acc 4: 157. https://doi.org/10.4172/2476-2296.1000157.

[74] Heidari, A. (2017). Concurrent Diagnosis of Oncology Influence Outcomes in Emergency General Surgery for Colorectal Cancer and Multiple Sclerosis (MS) Treatment Using Magnetic Resonance Imaging (MRI) and Au329(SR)84, Au329–xAgx(SR)84, Au144(SR)60, Au68(SR)36, Au30(SR)18, Au102(SPh)44, Au38(SPh)24, Au38(SC2H4Ph)24, Au21S(SAdm)15, Au36(pMBA)24 andAu25(pMBA)18 Nano Clusters, J Surgery Emerg Med 1: 21.

[75] Heidari, A. (2017). Developmental Cell Biology in Adult Stem Cells Death and Autophagy to Trigger a Preventive Allergic Reaction to Common Airborne Allergens under Synchrotron Radiation Using Nanotechnology for Therapeutic Goals in Particular Allergy Shots (Immunotherapy), Cell Biol (Henderson, NV) 6: 1.

[76] Heidari, A. (2017). Changing Metal Powder Characteristics for Elimination of the Heavy Metals Toxicity and Diseases in Disruption of Extracellular Matrix (ECM) Proteins Adjustment in Cancer Metastases Induced by Osteosarcoma, Chondrosarcoma, Carcinoid, Carcinoma, Ewing’s Sarcoma, Fibrosarcoma and Secondary Hematopoietic Solid or Soft Tissue Tumors, J Powder Metall Min 6: 170. https://doi.org/10.4172/2168-9806.1000170.

[77] Heidari, A. (2017). Nanomedicine–Based Combination Anti–Cancer Therapy between Nucleic Acids and Anti–Cancer Nano Drugs in Covalent Nano Drugs Delivery Systems for Selective Imaging and Treatment of Human Brain Tumors Using Hyaluronic Acid, Alguronic Acid and Sodium Hyaluronate as Anti–Cancer Nano Drugs and Nucleic Acids Delivery under Synchrotron Radiation, Am J Drug Deliv 5: 2. https://doi.org/10.21767/2321-547X.1000016.

[78] Heidari, A. (2017). Clinical Trials of Dendritic Cell Therapies for Cancer Exposing Vulnerabilities in Human Cancer Cells’ Metabolism and Metabolomics: New Discoveries, Unique Features Inform New Therapeutic Opportunities, Biotech's Bumpy Road to the Market and Elucidating the Biochemical Programs that Support Cancer Initiation and Progression, J Biol Med Science 1: e103.

[79] Heidari, A. (2017). The Design Graphene–Based Nanosheets as a New Nanomaterial in Anti–Cancer Therapy and Delivery of Chemotherapeutics and Biological Nano Drugs for Liposomal Anti–Cancer Nano Drugs and Gene Delivery, Br Biomed Bull 5: 305.

[80] Heidari, A. (2017). Integrative Approach to Biological Networks for Emerging Roles of Proteomics, Genomics and Transcriptomics in the Discovery and Validation of Human Colorectal Cancer Biomarkers from DNA/RNA Sequencing Data under Synchrotron Radiation, Transcriptomics 5: e117. https://doi.org/10.4172/2329-8936.1000e117.

[81] Heidari, A. (2017). Elimination of the Heavy Metals Toxicity and Diseases in Disruption of Extracellular Matrix (ECM) Proteins and Cell Adhesion Intelligent Nanomolecules Adjustment in Cancer Metastases Using Metalloenzymes and under Synchrotron Radiation, Lett Health Biol Sci 2 (2): 1–4. https://doi.org/10.15436/2475-6245.17.019.

[82] Heidari, A. (2017). Treatment of Breast Cancer Brain Metastases through a Targeted Nanomolecule Drug Delivery System Based on Dopamine Functionalized Multi–Wall Carbon Nanotubes (MWCNTs) Coated with Nano Graphene Oxide (GO) and Protonated Polyaniline (PANI) in Situ During the Polymerization of Aniline Autogenic Nanoparticles for the Delivery of Anti–Cancer Nano Drugs under Synchrotron Radiation, Br J Res, 4(3): 16. https://doi.org/10.21767/2394-3718.100016.

[83] Heidari, A. (2017). Sedative, Analgesic and Ultrasound–Mediated Gastrointestinal Nano Drugs Delivery for Gastrointestinal Endoscopic Procedure, Nano Drug–Induced Gastrointestinal Disorders and Nano Drug Treatment of Gastric Acidity, Res Rep Gastroenterol, 1:1.

[84] Heidari, A. (2017). Synthesis, Pharmacokinetics, Pharmacodynamics, Dosing, Stability, Safety and Efficacy of Orphan Nano Drugs to Treat High Cholesterol and Related Conditions and to Prevent Cardiovascular Disease under Synchrotron Radiation, J Pharm Sci Emerg Drugs 5: 1. https://doi.org/10.4172/2380-9477.1000e104.

[85] Heidari, A. (2017). Non–Linear Compact Proton Synchrotrons to Improve Human Cancer Cells and Tissues Treatments and Diagnostics through Particle Therapy Accelerators with Monochromatic Microbeams, J Cell Biol Mol Sci 2(1): 1–5.

[86] Heidari, A. (2017). Design of Targeted Metal Chelation Therapeutics Nanocapsules as Colloidal Carriers and Blood–Brain Barrier (BBB) Translocation to Targeted Deliver Anti–Cancer Nano Drugs into the Human Brain to Treat Alzheimer’s Disease under Synchrotron Radiation, J Nanotechnol Material Sci 4(2): 1–5.

[87] Gobato, R., Heidari, A. (2017). Calculations Using Quantum Chemistry for Inorganic Molecule Simulation BeLi2SeSi, American Journal of Quantum Chemistry and Molecular Spectroscopy, Vol. 2, No. 3, Pages 37–46.

[88] Heidari, (2017). A. Different High–Resolution Simulations of Medical, Medicinal, Clinical, Pharmaceutical and Therapeutics Oncology of Human Lung Cancer Translational Anti–Cancer Nano Drugs Delivery Treatment Process under Synchrotron and X–Ray Radiations, J Med Oncol. Vol. 1 No. 1: 1.

[89] Heidari, A. (2017). A Modern Ethnomedicinal Technique for Transformation, Prevention and Treatment of Human Malignant Gliomas Tumors into Human Benign Gliomas Tumors under Synchrotron Radiation, Am J Ethnomed, Vol. 4 No. 1: 10. https://doi.org/10.21767/2348-9502.100010.

[90] Heidari, A. (2014). An Investigation of the Role of DNA as Molecular Computers: A Computational Study on the Hamiltonian Path Problem, International Journal of Scientific & Engineering Research, Vol. 5, Issue 1, Pages 1884–1889.

[91] Heidari, A. (2017). Active Targeted Nanoparticles for Anti–Cancer Nano Drugs Delivery across the Blood–Brain Barrier for Human Brain Cancer Treatment, Multiple Sclerosis (MS) and Alzheimer's Diseases Using Chemical Modifications of Anti–Cancer Nano Drugs or Drug–Nanoparticles through Zika Virus (ZIKV) Nanocarriers under Synchrotron Radiation, J Med Chem Toxicol, 2(3): 1–5. https://doi.org/10.15436/2575-808X.17.1594.

[92] Heidari, A. (2017). Investigation of Medical, Medicinal, Clinical and Pharmaceutical Applications of Estradiol, Mestranol (Norlutin), Norethindrone (NET), Norethisterone Acetate (NETA), Norethisterone Enanthate (NETE) and Testosterone Nanoparticles as Biological Imaging, Cell Labeling, Anti–Microbial Agents and Anti–Cancer Nano Drugs in Nanomedicines Based Drug Delivery Systems for Anti–Cancer Targeting and Treatment, Parana Journal of Science and Education (PJSE)–V.3, n.4, (10–19) October 12.

[93] Heidari, A. (2017). A Comparative Computational and Experimental Study on Different Vibrational Biospectroscopy Methods, Techniques and Applications for Human Cancer Cells in Tumor Tissues Simulation, Modeling, Research, Diagnosis and Treatment, Open J Anal Bioanal Chem 1(1): 014–020.

[94] Heidari, A. (2017). Combination of DNA/RNA Ligands and Linear/Non–Linear Visible–Synchrotron Radiation–Driven N–Doped Ordered Mesoporous Cadmium Oxide (CdO) Nanoparticles Photocatalysts Channels Resulted in an Interesting Synergistic Effect Enhancing Catalytic Anti–Cancer Activity, Enz Eng 6: 1.

[95] Heidari, A. (2017). Modern Approaches in Designing Ferritin, Ferritin Light Chain, Transferrin, Beta–2 Transferrin and Bacterioferritin–Based Anti–Cancer Nano Drugs Encapsulating Nanosphere as DNA–Binding Proteins from Starved Cells (DPS), Mod Appro Drug Des. 1(1). MADD.000504.

[96] Heidari, A. (2017). Potency of Human Interferon β–1a and Human Interferon β–1b in Enzymotherapy, Immunotherapy, Chemotherapy, Radiotherapy, Hormone Therapy and Targeted Therapy of Encephalomyelitis Disseminate/Multiple Sclerosis (MS) and Hepatitis A, B, C, D, E, F and G Virus Enter and Targets Liver Cells, J Proteomics Enzymol 6: 1. https://doi.org/10.4172/2470-1289.1000e109.

[97] Heidari, A. (2017). Transport Therapeutic Active Targeting of Human Brain Tumors Enable Anti–Cancer Nanodrugs Delivery across the Blood–Brain Barrier (BBB) to Treat Brain Diseases Using Nanoparticles and Nanocarriers under Synchrotron Radiation, J Pharm Pharmaceutics 4(2): 1–5.

[98] Heidari, A., Brown, C. (2017). Combinatorial Therapeutic Approaches to DNA/RNA and Benzylpenicillin (Penicillin G), Fluoxetine Hydrochloride (Prozac and Sarafem), Propofol (Diprivan), Acetylsalicylic Acid (ASA) (Aspirin), Naproxen Sodium (Aleve and Naprosyn) and Dextromethamphetamine Nanocapsules with Surface Conjugated DNA/RNA to Targeted Nano Drugs for Enhanced Anti–Cancer Efficacy and Targeted Cancer Therapy Using Nano Drugs Delivery Systems, Ann Adv Chem. 1(2): 061–069.

[99] Heidari, A. (2016). Vibrational Spectroscopy of Nucleic Acids, Wahid Ali Khan (Editor), Basic Biochemistry, Austin Publishing Group (APG)/Austin Publications LLC, ISBN: 978–0–9971499–2–0, Pages 1–18, Jersey City, New Jersey, USA.

[100] Heidari, A. (2017). High–Resolution Simulations of Human Brain Cancer Translational Nano Drugs Delivery Treatment Process under Synchrotron Radiation, J Transl Res 1(1): 1–3.

[101] Bastogne, T. (2017). Quality-by-design of nanopharmaceuticals – a state of the art, Nanomedicine: Nanotechnology, Biology and Medicine, ISSN 1549-9634, https://doi.org/10.1016/j.nano.2017.05.014.

[102] Vanić, Ž. Škalko-Basnet, N. (2013). Nanopharmaceuticals for improved topical vaginal therapy: Can they deliver?, European Journal of Pharmaceutical Sciences, Volume 50, Issue 1, Pages 29-41, ISSN 0928-0987, https://doi.org/10.1016/j.ejps.2013.04.035.

[103] Islan, G. A., Durán, M., Cacicedo, M. L., Nakazato, G., Kobayashi, R. K. T., Martinez, D. S. T., Castro, G. R., Durán, N. (2017). Nanopharmaceuticals as a solution to neglected diseases: Is it possible?, Acta Tropica, Volume 170, Pages 16-42, ISSN 0001-706X, https://doi.org/10.1016/j.actatropica.2017.02.019.

[104] Bawarski, W. E., Chidlowsky, E., Bharali, D. J., Mousa, S. A. (2008). Emerging nanopharmaceuticals, Nanomedicine: Nanotechnology, Biology and Medicine, Volume 4, Issue 4, Pages 273-282, ISSN 1549-9634, https://doi.org/10.1016/j.nano.2008.06.002.

[105] Eaton, M. A. W. (2011). How do we develop nanopharmaceuticals under open innovation?, Nanomedicine: Nanotechnology, Biology and Medicine, Volume 7, Issue 4, Pages 371-375, ISSN 1549-9634, https://doi.org/10.1016/j.nano.2011.05.015.

[106] Hadinoto, K., Yang, Y. (2014). Continuous and sustainable granulation of nanopharmaceuticals by spray coagulation encapsulation in alginate, International Journal of Pharmaceutics, Volume 473, Issue 1, Pages 644-652, ISSN 0378-5173, https://doi.org/10.1016/j.ijpharm.2014.07.042.

[107] Svenson, S., Wolfgang, M., Hwang, J., Ryan, J., Eliasof, S. (2011). Preclinical to clinical development of the novel camptothecin nanopharmaceutical CRLX101, Journal of Controlled Release, Volume 153, Issue 1, Pages 49-55, ISSN 0168-3659, https://doi.org/10.1016/j.jconrel.2011.03.007.

[108] Sosnik, A. (2013). Reversal of multidrug resistance by the inhibition of ATP-binding cassette pumps employing Generally Recognized As Safe (GRAS) nanopharmaceuticals: A review, Advanced Drug Delivery Reviews, Volume 65, Issue 13, Pages 1828-1851, ISSN 0169-409X, https://doi.org/10.1016/j.addr.2013.09.002.

[109] Filipović-GrÄić, J., Mrhar, A., Junginger, H. (2013). Thematic Issue on Emerging nanopharmaceuticals for non-parenteral application routes, European Journal of Pharmaceutical Sciences, Volume 50, Issue 1, Page 1, ISSN 0928-0987, https://doi.org/10.1016/j.ejps.2013.05.025.

[110] Yu, H., Hadinoto, K. (2015). Mitigating the adverse effect of spray drying on the supersaturation generation capability of amorphous nanopharmaceutical powders, Powder Technology, Volume 277, Pages 97-104, ISSN 0032-5910, https://doi.org/10.1016/j.powtec.2015.02.059.

[111] Moghimi, S. M., Farhangrazi, Z. S. (2013). Nanomedicine and the complement paradigm, Nanomedicine: Nanotechnology, Biology and Medicine, Volume 9, Issue 4, Pages 458-460, ISSN 1549-9634, https://doi.org/10.1016/j.nano.2013.02.011.

[112] Eliasof, S., Ng, P. S., Soo, P. L., Podobinski, J., Case, R. I., Shum, P., Martinez, J. G., Kabir, S. R., Lazarus, D., Svenson, S. (2010). 425 Significantly enhanced therapeutic profile of docetaxel in novel nanopharmaceutical CRLX288, European Journal of Cancer Supplements, Volume 8, Issue 7, Page 135, ISSN 1359-6349, https://doi.org/10.1016/S1359-6349(10)72132-7.

[113] Domingo, C., Saurina, J. (2012). An overview of the analytical characterization of nanostructured drug delivery systems: Towards green and sustainable pharmaceuticals: A review, Analytica Chimica Acta, Volume 744, Pages 8-22, ISSN 0003-2670, https://doi.org/10.1016/j.aca.2012.07.010.

[114] Samadder, A., Abraham, S. K., Khuda-Bukhsh, A. R. (2016). Nanopharmaceutical approach using pelargonidin towards enhancement of efficacy for prevention of alloxan-induced DNA damage in L6 cells via activation of PARP and p53, Environmental Toxicology and Pharmacology, Volume 43, Pages 27-37, ISSN 1382-6689, https://doi.org/10.1016/j.etap.2016.02.010.

[115] Yen, Y., Synold, T., Weiss, G. J., Schluep, T., Ryan, J. (2010). 423 Phase 1 dose escalation, safety and pharmacokinetic study of IT-101 (CRLX101), a novel nanopharmaceutical containing camptothecin, in advanced solid tumor cancer patients, European Journal of Cancer Supplements, Volume 8, Issue 7, Pages 134-135, ISSN 1359-6349, https://doi.org/10.1016/S1359-6349(10)72130-3.

[116] Azmi, I. D. M., Wibroe, P. P., Wu, L. P., Kazem, A. I., Amenitsch, H., Moghimi, S. M., Yaghmur, A. (2016). A structurally diverse library of safe-by-design citrem-phospholipid lamellar and non-lamellar liquid crystalline nano-assemblies, Journal of Controlled Release, Volume 239, Pages 1-9, ISSN 0168-3659, https://doi.org/10.1016/j.jconrel.2016.08.011.

[117] Li, J., Wang, Y., Liang, R., an, X., Wang, K., Shen, G., Tu, Y., Zhu, J., Tao, J. (2015). Recent advances in targeted nanoparticles drug delivery to melanoma, Nanomedicine: Nanotechnology, Biology and Medicine, Volume 11, Issue 3, Pages 769-794, ISSN 1549-9634, https://doi.org/10.1016/j.nano.2014.11.006.

[118] Liu, J., Zhao, Y., Guo, Q., Wang, Z., Wang, H., Yang, Y., Huang, Y. (2012). TAT-modified nanosilver for combating multidrug-resistant cancer, Biomaterials, Volume 33, Issue 26, Pages 6155-6161, ISSN 0142-9612, https://doi.org/10.1016/j.biomaterials.2012.05.035.

[119] Gabellieri, C., Frima, H. (2011). Nanomedicine in the European Commission policy for nanotechnology, Nanomedicine: Nanotechnology, Biology and Medicine, Volume 7, Issue 5, Pages 519-520, ISSN 1549-9634, https://doi.org/10.1016/j.nano.2011.07.003.

[120] Frederickson, R. M., Moghimi, S. M., Wagner, E., Yla-Herttuala, S. (2016). Call for papers: Nanoparticle Development and Applications in Cellular and Molecular Therapies, Molecular Therapy, Volume 24, Issue 8, Pages 1334-1335, ISSN 1525-0016, https://doi.org/10.1038/mt.2016.164.

[121] Namdari, M., Eatemadi, A., Soleimaninejad, M., Hammed, A. T., (2017). A brief review on the application of nanoparticle enclosed herbal medicine for the treatment of infective endocarditis, Biomedicine & Pharmacotherapy, Volume 87, Pages 321-331, ISSN 0753-3322, https://doi.org/10.1016/j.biopha.2016.12.099.

[122] Kiew, T. Y., Cheow, W. S., Hadinoto, K. (2015). Preserving the supersaturation generation capability of amorphous drug-polysaccharide nanoparticle complex after freeze-drying, International Journal of Pharmaceutics, Volume 484, Issue 1, Pages 115-123, ISSN 0378-5173, https://doi.org/10.1016/j.ijpharm.2015.02.057.

[123] Moghimi, S. M., Wibroe, P. P., Helvig, S. Y., Farhangrazi, Z. S., Hunter, A. C. (2012). Genomic perspectives in inter-individual adverse responses following nanomedicine administration: The way forward, Advanced Drug Delivery Reviews, Volume 64, Issue 13, Pages 1385-1393, ISSN 0169-409X, https://doi.org/10.1016/j.addr.2012.05.010.

[124] Gil, P. R., Hühn, D., Del Mercato, L. L., Sasse, D., Parak, W. J. (2010). Nanopharmacy: Inorganic nanoscale devices as vectors and active compounds, Pharmacological Research, Volume 62, Issue 2, Pages 115-125, ISSN 1043-6618, https://doi.org/10.1016/j.phrs.2010.01.009.

[125] Rzigalinski, B. A., Strobl, J. S. (2009). Cadmium-containing nanoparticles: Perspectives on pharmacology and toxicology of quantum dots, Toxicology and Applied Pharmacology, Volume 238, Issue 3, Pages 280-288, ISSN 0041-008X, https://doi.org/10.1016/j.taap.2009.04.010.

[126] Fako, V. E., Furgeson, D. Y. (2009). Zebrafish as a correlative and predictive model for assessing biomaterial nanotoxicity, Advanced Drug Delivery Reviews, Volume 61, Issue 6, Pages 478-486, ISSN 0169-409X, https://doi.org/10.1016/j.addr.2009.03.008.

[127] Sainz, V., Conniot, J., Matos, A. I., Peres, C., ZupanÇ’iÇ’, E., Moura, L., Silva, L. C., Florindo, H. F., Gaspar, R. S. (2015). Regulatory aspects on nanomedicines, Biochemical and Biophysical Research Communications, Volume 468, Issue 3, Pages 504-510, ISSN 0006-291X, https://doi.org/10.1016/j.bbrc.2015.08.023.

[128] Duncan, R., Vicent, M. J., (2010). Do HPMA copolymer conjugates have a future as clinically useful nanomedicines? A critical overview of current status and future opportunities, Advanced Drug Delivery Reviews, Volume 62, Issue 2, Pages 272-282, ISSN 0169-409X, https://doi.org/10.1016/j.addr.2009.12.005.

[129] Zhou, X., Che, L., Wei, Y., Dou, Y., Chen, S., He, H., Gong, H., Li, X., Zhang, J. (2014). Facile route to versatile nanoplatforms for drug delivery by one-pot self-assembly, Acta Biomaterialia, Volume 10, Issue 6, Pages 2630-2642, ISSN 1742-7061, https://doi.org/10.1016/j.actbio.2014.01.024.

[130] Wibroe, P. P., Ahmadvand, D., Oghabian, M. A., Yaghmur, A., Moghimi, S. M. (2016). An integrated assessment of morphology, size, and complement activation of the PEGylated liposomal doxorubicin products Doxil®, Caelyx®, DOXOrubicin, and SinaDoxosome, Journal of Controlled Release, Volume 221, Pages 1-8, ISSN 0168-3659, https://doi.org/10.1016/j.jconrel.2015.11.021.

[131] Nguyen, M. H., Yu, H., Dong, B., Hadinoto, K. (2016). A supersaturating delivery system of silibinin exhibiting high payload achieved by amorphous nano-complexation with chitosan, European Journal of Pharmaceutical Sciences, Volume 89, Pages 163-171, ISSN 0928-0987, https://doi.org/10.1016/j.ejps.2016.04.036.

[132] Special Issue Title Page, Biotechnology Advances, Volume 32, Issue 4, 2014, Page iii, ISSN 0734-9750, https://doi.org/10.1016/S0734-9750(14)00084-6.

[133] Beija, M., Salvayre, R., Viguerie, N. L., Marty, J. D. (2012). Colloidal systems for drug delivery: from design to therapy, Trends in Biotechnology, Volume 30, Issue 9, Pages 485-496, ISSN 0167-7799, https://doi.org/10.1016/j.tibtech.2012.04.008.

[134] Vaishali, A., Varma, K. M., Bhupathi, P. A., Bharath, T. S., Ramesh, M. V., Varma, P. V. K. (2017). In vitro evaluation of antimicrobial efficacy of 2% chlorhexidine loaded electrospun nanofibers, Journal of Pierre Fauchard Academy (India Section), ISSN 0970-2199, https://doi.org/10.1016/j.jpfa.2017.01.006.

[135] Bawa, R. (2009). NanoBiotech 2008: Exploring global advances in nanomedicine, Nanomedicine: Nanotechnology, Biology and Medicine, Volume 5, Issue 1, Pages 5-7, ISSN 1549-9634, https://doi.org/10.1016/j.nano.2009.01.004.

[136] Marianecci, C., Petralito, S., Rinaldi, F., Hanieh, P. N., Carafa, M. (2016). Some recent advances on liposomal and niosomal vesicular carriers, Journal of Drug Delivery Science and Technology, Volume 32, Pages 256-269, ISSN 1773-2247, https://doi.org/10.1016/j.jddst.2015.10.008.

[137] Patil, S., Chaudhari, K., Kamble, R. (2017). Electrospray technique for cocrystallization of phytomolecules, Journal of King Saud University - Science, ISSN 1018-3647, https://doi.org/10.1016/j.jksus.2017.04.001.

[138] Fonseca, N. A., Gregório, A. C., Valério-Fernandes, Â., Simões, S., Moreira, J. N. (2014). Bridging cancer biology and the patients' needs with nanotechnology-based approaches, Cancer Treatment Reviews, Volume 40, Issue 5, Pages 626-635, ISSN 0305-7372, https://doi.org/10.1016/j.ctrv.2014.02.002.

[139] Bedi, D., Musacchio, T., Fagbohun, O. A., Gillespie, J. W., Deinnocentes, P., Bird, R. C., Bookbinder, L., Torchilin, V. P., Petrenko, V. A. (2011). Delivery of siRNA into breast cancer cells via phage fusion protein-targeted liposomes, Nanomedicine: Nanotechnology, Biology and Medicine, Volume 7, Issue 3, Pages 315-323, ISSN 1549-9634, https://doi.org/10.1016/j.nano.2010.10.004.

[140] Canal, F., Sanchis, J., Vicent, M. J. (2011). Polymer–drug conjugates as nano-sized medicines, Current Opinion in Biotechnology, Volume 22, Issue 6, Pages 894-900, ISSN 0958-1669, http://dx.doi.org/10.1016/j.copbio.2011.06.003.

[141] Hügel, H. M., Jackson, N. (2014). Danshen diversity defeating dementia, Bioorganic & Medicinal Chemistry Letters, Volume 24, Issue 3, Pages 708-716, ISSN 0960-894X, http://dx.doi.org/10.1016/j.bmcl.2013.12.042.

[142] Special Issue title page, European Journal of Pharmaceutics and Biopharmaceutics, Volume 79, Issue 1, Page v, ISSN 0939-6411, http://dx.doi.org/10.1016/S0939-6411(11)00237-2.

[143] Donaldson, L. (2012). Designer nanoparticles to treat blood cancer, Materials Today, Volume 15, Issue 7, Page 298, ISSN 1369-7021, http://dx.doi.org/10.1016/S1369-7021(12)70128-1.

[144] Graphical Abstracts, Journal of Fluorine Chemistry, Volume 198, 2017, Pages v-viii, ISSN 0022-1139, http://dx.doi.org/10.1016/S0022-1139(17)30214-2.

[145] Bose, R. J. C., Lee, S. H., Park, H. (2016). Biofunctionalized nanoparticles: an emerging drug delivery platform for various disease treatments, Drug Discovery Today, Volume 21, Issue 8, Pages 1303-1312, ISSN 1359-6446, http://dx.doi.org/10.1016/j.drudis.2016.06.005.

[146] Hall, A., Lächelt, U., Bartek, J., Wagner, E., Moghimi, S. M. (2017). Polyplex Evolution: Understanding Biology, Optimizing Performance, Molecular Therapy, Volume 25, Issue 7, Pages 1476-1490, ISSN 1525-0016, http://dx.doi.org/10.1016/j.ymthe.2017.01.024.

[147] Storm, G. (2012). Preface, European Journal of Pharmaceutical Sciences, Volume 45, Issue 4, Page 387, ISSN 0928-0987, http://dx.doi.org/10.1016/j.ejps.2011.11.001.

[148] Table of Contents, Acta Pharmaceutica Sinica B, Volume 7, Issue 3, 2017, Pages iii-vii, ISSN 2211-3835, http://dx.doi.org/10.1016/S2211-3835(17)30142-9.

[149] Du Toit, L. C., Pillay, V., Choonara, Y. E. (2010). Nano-microbicides: Challenges in drug delivery, patient ethics and intellectual property in the war against HIV/AIDS, Advanced Drug Delivery Reviews, Volume 62, Issue 4, Pages 532-546, ISSN 0169-409X, http://dx.doi.org/10.1016/j.addr.2009.11.022.

[150] Kumar, B., Angulo, Y., Smita, K., Cumbal, L., Debut, A. (2016). Capuli cherry-mediated green synthesis of silver nanoparticles under white solar and blue LED light, Particuology, Volume 24, Pages 123-128, ISSN 1674-2001, http://dx.doi.org/10.1016/j.partic.2015.05.005.

[151] Rajabi, M., Sudha, T., Darwish, N. H. E., Davis, P. J., Mousa, S. A. (2016). Synthesis of MR-49, a deiodinated analog of tetraiodothyroacetic acid (tetrac), as a novel pro-angiogenesis modulator, Bioorganic & Medicinal Chemistry Letters, Volume 26, Issue 16, Pages 4112-4116, ISSN 0960-894X, http://dx.doi.org/10.1016/j.bmcl.2016.06.064.

[152] Andersen, A. J., Wibroe, P. P., Moghimi, S. M. (2012). Perspectives on carbon nanotube-mediated adverse immune effects, Advanced Drug Delivery Reviews, Volume 64, Issue 15, Pages 1700-1705, ISSN 0169-409X, http://dx.doi.org/10.1016/j.addr.2012.05.005.

[153] Subject Index Volume 153, Journal of Controlled Release, Volume 153, Issue 3, 2011, Pages e8-e9, ISSN 0168-3659, http://dx.doi.org/10.1016/S0168-3659(11)00517-7.

[154] Kabanov, A., Bronich, T. (2011). Eighth International Nanomedicine and Drug Delivery Symposium (NanoDDS'10), Journal of Controlled Release, Volume 153, Issue 1, Page 1, ISSN 0168-3659, http://dx.doi.org/10.1016/j.jconrel.2011.06.002.

[155] Nagy, Z. K., Balogh, A., Démuth, B., Pataki, H., Vigh, T., Szabó, B., Molnár, K., Schmidt, B. T., Horák, P., Marosi, G., Verreck, G., Assche, I. V., Brewster, M. E. (2015). High speed electrospinning for scaled-up production of amorphous solid dispersion of itraconazole, International Journal of Pharmaceutics, Volume 480, Issue 1, Pages 137-142, ISSN 0378-5173, http://dx.doi.org/10.1016/j.ijpharm.2015.01.025.

[156] Nickols-Richardson, S. M. (2007). Nanotechnology: Implications for Food and Nutrition Professionals, Journal of the American Dietetic Association, Volume 107, Issue 9, Pages 1494-1497, ISSN 0002-8223, http://dx.doi.org/10.1016/j.jada.2007.06.016.

[157] Gaspar, R., Duncan, R. (2009). Polymeric carriers: Preclinical safety and the regulatory implications for design and development of polymer therapeutics, Advanced Drug Delivery Reviews, Volume 61, Issue 13, Pages 1220-1231, ISSN 0169-409X, http://dx.doi.org/10.1016/j.addr.2009.06.003.

[158] Graphical Abstracts Contents Listing, Journal of Controlled Release, Volume 153, Issue 1, 2011, Pages e1-e4, ISSN 0168-3659, http://dx.doi.org/10.1016/S0168-3659(11)00428-7.

[159] Bourlinos, A. B., Georgakilas, V., Bakandritsos, A., Kouloumpis, A., Gournis, D., Zboril, R. (2012). Aqueous-dispersible fullerol-carbon nanotube hybrids, Materials Letters, Volume 82, Pages 48-50, ISSN 0167-577X, http://dx.doi.org/10.1016/j.matlet.2012.05.026.

[160] Recommended Articles, Journal of Acupuncture and Meridian Studies, Volume 9, Issue 6, 2016, Pages 345-348, ISSN 2005-2901, http://dx.doi.org/10.1016/j.jams.2016.12.001.

[161] Svenson, S. (2012). Clinical translation of nanomedicines, Current Opinion in Solid State and Materials Science, Volume 16, Issue 6, Pages 287-294, ISSN 1359-0286, http://dx.doi.org/10.1016/j.cossms.2012.10.001.

[162] Sitterberg, J., Özcetin, A., Ehrhardt, C., Bakowsky, U. (2010). Utilising atomic force microscopy for the characterisation of nanoscale drug delivery systems, European Journal of Pharmaceutics and Biopharmaceutics, Volume 74, Issue 1, Pages 2-13, ISSN 0939-6411, http://dx.doi.org/10.1016/j.ejpb.2009.09.005.

[163] Telford, M. (2005). Cancer centers founded, Materials Today, Volume 8, Issue 12, Page 19, ISSN 1369-7021, http://dx.doi.org/10.1016/S1369-7021(05)71277-3.

[164] Alibolandi, M., Sadeghi, F., Abnous, K., Atyabi, F., Ramezani, M., Hadizadeh, F. (2015). The chemotherapeutic potential of doxorubicin-loaded PEG-b-PLGA nanopolymersomes in mouse breast cancer model, European Journal of Pharmaceutics and Biopharmaceutics, Volume 94, Pages 521-531, ISSN 0939-6411, http://dx.doi.org/10.1016/j.ejpb.2015.07.005.

[165] Bridoux, A., Cui, H., Dyskin, E., Yalcin, M., Mousa, S. A. (2009). Semisynthesis and pharmacological activities of Tetrac analogs: Angiogenesis modulators, Bioorganic & Medicinal Chemistry Letters, Volume 19, Issue 12, Pages 3259-3263, ISSN 0960-894X, http://dx.doi.org/10.1016/j.bmcl.2009.04.094.

[166] Stuurman, F. E., Voest, E. E., Awada, A., Schellens, J. H. M., Witteveen, P. O., Bergeland, T., Hals, P. A., Hendlisz, A. (2010). 426 Phase I study of oral CP-4126, a gemcitabine analog, in patients with advanced solid tumours, European Journal of Cancer Supplements, Volume 8, Issue 7, Page 135, ISSN 1359-6349, http://dx.doi.org/10.1016/S1359-6349(10)72133-9.

[167] Kondo, E. (2010). 424 Development of novel cancer cell-selective cell-penetrating peptides for the advanced peptide-based drug delivery system, European Journal of Cancer Supplements, Volume 8, Issue 7, Page 135, ISSN 1359-6349, http://dx.doi.org/10.1016/S1359-6349(10)72131-5.

[168] Recommended Articles, Journal of Acupuncture and Meridian Studies, Volume 9, Issue 5, 2016, Pages 281-284, ISSN 2005-2901, http://dx.doi.org/10.1016/j.jams.2016.10.002.

[169] Jindal, A. B., Bachhav, S. S., Devarajan, P. V. (2017). Hybrid nano drug delivery system (IHN-DDS) of antiretroviral drug for simultaneous targeting to multiple viral reservoirs: An proof of concept, International Journal of Pharmaceutics, Volume 521, Issue 1, Pages 196-203, ISSN 0378-5173, http://dx.doi.org/10.1016/j.ijpharm.2017.02.024.

[170] Rapoport, N. (2007). Physical stimuli-responsive polymeric micelles for anti-cancer drug delivery, Progress in Polymer Science, Volume 32, Issue 8, Pages 962-990, ISSN 0079-6700, http://dx.doi.org/10.1016/j.progpolymsci.2007.05.009.

[171] Fernández, L. Ã. (2011). Muyldermans, S. Recent developments in engineering and delivery of protein and antibody therapeutics, Current Opinion in Biotechnology, Volume 22, Issue 6, Pages 839-842, ISSN 0958-1669, http://dx.doi.org/10.1016/j.copbio.2011.08.001.

[172] Pippa, N., Dokoumetzidis, A., Demetzos, C., Macheras, P. (2013). On the ubiquitous presence of fractals and fractal concepts in pharmaceutical sciences: A review, International Journal of Pharmaceutics, Volume 456, Issue 2, Pages 340-352, ISSN 0378-5173, http://dx.doi.org/10.1016/j.ijpharm.2013.08.087.

[173] Verreault, M., Strutt, D., Masin, D., Anantha, M., Waterhouse, D., Yapp, D. T., Bally, M. B. (2012). Irinophore Câ„¢, a lipid-based nanoparticulate formulation of irinotecan, is more effective than free irinotecan when used to treat an orthotopic glioblastoma model, Journal of Controlled Release, Volume 158, Issue 1, Pages 34-43, ISSN 0168-3659, http://dx.doi.org/10.1016/j.jconrel.2011.09.095.

[174] Hassanzadeh, P., Atyabi, F., Dinarvand, R. (2017). Application of modelling and nanotechnology-based approaches: The emergence of breakthroughs in theranostics of central nervous system disorders, Life Sciences, Volume 182, Pages 93-103, ISSN 0024-3205, http://dx.doi.org/10.1016/j.lfs.2017.06.001.

[175] Sivanesan, S., Tan, A., Jeyaraj, R., Lam, J., Gole, M., Hardan, A., Ashkan, K., Rajadas, J. (2017). Pharmaceuticals and Stem Cells in Autism Spectrum Disorders: Wishful Thinking?, World Neurosurgery, Volume 98, Pages 659-672, ISSN 1878-8750, http://dx.doi.org/10.1016/j.wneu.2016.09.100.

[176] Phillips, R., Makeen, H., Periasamy, N., Loadman, P., Smye, S., Sleeman, B., Jones, P., Evans, C., Twelves, C. (2010). 427 The development and evaluation of an experimental model for assessing convective fluid flow through multicell layers, European Journal of Cancer Supplements, Volume 8, Issue 7, Pages 135-136, ISSN 1359-6349, http://dx.doi.org/10.1016/S1359-6349(10)72134-0.

[177] Varan, G., Varan, C., Erdoğar, N., Hıncal, A. A., Bilensoy, E. (2017). Amphiphilic cyclodextrin nanoparticles, International Journal of Pharmaceutics, ISSN 0378-5173, http://dx.doi.org/10.1016/j.ijpharm.2017.06.010.

[178] [Moghimi, S. M., Farhangrazi, Z. S. (2014). Just so stories: The random acts of anti-cancer nanomedicine performance, Nanomedicine: Nanotechnology, Biology and Medicine, Volume 10, Issue 8, Pages 1661-1666, ISSN 1549-9634, http://dx.doi.org/10.1016/j.nano.2014.04.011.

[179] Soria, J.C., Gomez-Roca, C.A., Ware, J.A., Adjei, A.A., Brachmann, R.K., Groen, H.J.M. (2010). 421 A Phase Ib study to evaluate the pan-PI3K inhibitor GDC-0941 with paclitaxel and carboplatin with and without bevacizumab in non-small cell lung cancer patients, European Journal of Cancer Supplements, Volume 8, Issue 7, Page 134, ISSN 1359-6349, http://dx.doi.org/10.1016/S1359-6349(10)72128-5.

[180] McMurray, J., Klostergaard, J., Auzenne, E.J., Liao, W.S.L., Lu, Z., Mandal, P.K., Ramesh, R., Shanker, M., Scott, A.W. (2010). 422 Targeting the SH2 domain of Stat3 with phosphopeptide mimetic prodrugs leads to tumor growth inhibition and down-regulation of phosphoTyr705 Stat3 and angiogenic pathways, European Journal of Cancer Supplements, Volume 8, Issue 7, Page 134, ISSN 1359-6349, http://dx.doi.org/10.1016/S1359-6349(10)72129-7.

[181] Sans-Serramitjana, E., Fusté, E., Martínez-Garriga, B., Merlos, A., Pastor, M., Pedraz, J.L., Esquisabel, A., Bachiller, D., Vinuesa, T., Viñas, M. (2016). Killing effect of nanoencapsulated colistin sulfate on from cystic fibrosis patients, Journal of Cystic Fibrosis, Volume 15, Issue 5, Pages 611-618, ISSN 1569-1993, http://dx.doi.org/10.1016/j.jcf.2015.12.005.

[182] Rigo, L. A., Carvalho-Wodarz, C. S., Pohlmann, A. R., Guterres, S. S., Schneider-Daum, N., Lehr, C. M., Beck, R. C. R. (2017). Nanoencapsulation of a glucocorticoid improves barrier function and anti-inflammatory effect on monolayers of pulmonary epithelial cell lines, European Journal of Pharmaceutics and Biopharmaceutics, Volume 119, Pages 1-10, ISSN 0939-6411, http://dx.doi.org/10.1016/j.ejpb.2017.05.006.

[183] Alibolandi, M., Taghdisi, S. M., Ramezani, P., Shamili, F. H., Farzad, S. A., Abnous, K., Ramezani, M. (2017). Smart AS1411-aptamer conjugated pegylated PAMAM dendrimer for the superior delivery of camptothecin to colon adenocarcinoma and , International Journal of Pharmaceutics, Volume 519, Issue 1, Pages 352-364, ISSN 0378-5173, http://dx.doi.org/10.1016/j.ijpharm.2017.01.044.

[184] Bridoux, A., Cui, H., Dyskin, E., Schmitzer, A. R., Yalcin, M., Mousa, S. A. (2010). Semisynthesis and pharmacological activities of thyroxine analogs: Deve

View Full Article: