Non enzymatic NADH-dependent reduction of Cis-[Co(en)2(H2O)2]3+ in aqueous medium

Authors

  • Bharati Behera "Utkal University, Vani Vihar, Bhubaneswar"
  • Jashoda Behera

DOI:

https://doi.org/10.14419/ijac.v6i2.13047

Published:

2018-07-28

Keywords:

Diaquabisethylenediamine Cobalt(III), Electron Transfer, Kinetics, NADH, Nonenzymatic.

Abstract

The kinetics of the electron transfer reaction of NADH with Cis-[Co(en)2(H2O)2]3+ has been studied over the range 1.0 ≤ 102 [NADH] ≤ 3.0 mol dm-3, 7.0 ≤ pH ≤ 8.0 and 200C ≤ t ≤ 350C in aqueous medium. The rate of electron transfer reaction was found to be first-order dependence each in [NADH]T and Cis-[Co(en)2(H2O)2]3+T. The products of the reaction were found to be NAD+ and Co(II). The corresponding activation parameters of the electron transfer reactions were found to be as ΔH#=27.55 kJ mol-1 and  ΔS#= -189.35 JK-1mol-1.

 

References

  1. [1] Unden, G. & Bongaerts, J. (1997). Alternative respiratory pathways of Escherichia coli: energetic and transcriptional regulation in response to electron acceptors. Biochim. Biophys. Acta., 1320, 217-234. https://doi.org/10.1016/S0005-2728(97)00034-0.

    [2] Pollak, N., Dolle, C. & Ziegler, M. (2007). The power to reduce: pyridine nucleotides- small molecules with a multitude of functions. Biochem. J., 402, 205-218.

    https://doi.org/10.1042/BJ20061638.

    [3] Dawson, R. B. (1985). Data for biochemical research (3rdEdn.), Clarendon in press, Oxford, pp. 122.

    [4] Biellmann, J. F., Lapinte, C., Haid, E. &Weimann, G. (1979). Structure of lactate dehydrogenase inhibitor generated from coenzyme. Biochemistry., 18, 1212-1217.

    https://doi.org/10.1021/bi00574a015.

    [5] Kumari, P., Das, A., Baral, D. K., Pattanaik, A. K. &Mohanty, P. (2011). Nonenzymatic NADH-dependent reduction of keggin- type 12-tungstocobaltate (III) in aqueous medium. E-J. Chem., 8, 1152-1157.https://doi.org/10.1155/2011/341865.

    [6] Nagolkar B. B., Chavan, L. D., Chondhekar, T. K. &Shankarwar, S. G. (2016). Kinetics and mechanistic study of oxidation of Atenolol drug in acidic medium by 12-tungstocobaltate (III). J. Chem. & Chem. Sci., 6, 1-8.

    [7] Senapati, S., Patnaik, A. K., Das, S. P. &Mohanty, P. (2014). Electron transfer reaction of pyridoxine (vitamin B6) with keggin type 12-tungstocobaltate (III) in aqueous perchlorate medium. ACSJ., 4, 242-254. https://doi.org/10.9734/ACSJ/2014/6880.

    [8] Makote, R. D. & Chatterjee, C. (1999). Kinetics and mechanism of oxidation of ascorbic acid by cobalt (III) amino polycarboxylato complexes in weakly basic media. IJCA., 38, 783-791.

    [9] Chylewska, A., Turecka, K., Dabrowska, A., Werel, W. &Chmurzynski, L. (2013). Synthesis, physicochemical characterization and antimicrobial activity of Co (III) complexes with diamine chelate ligands. IJAPBC., 2, 454-464.

    [10] Sami, P. & Rajasekaran, K. (2009). Studies on electron transfer reactions of Keggin-type mixed addenda heteropolytungstovanadophosphates with NADH. J. Chem. Sci., 121, 155-161. https://doi.org/10.1007/s12039-009-0017-8.

    [11] Lovstad, R. A. (2006). A kinetic study on the phenothiazine dependent oxidation of NADH by bovine ceruloplasmin. BioMetals., 19, 1-5. https://doi.org/10.1007/s10534-005-2627-z.

    [12] Adjimani, J. P. & Owusu, E. (1997). Nonenzymatic NADH/FMN-dependent reduction of ferric siderophores. J. Inorg. Biochem., 1997, 66, 247-252.https://doi.org/10.1016/S0162-0134(96)00221-8.

    [13] Krishnmurty, M. J. (1972). Modified synthesis of trans-dichioro-bis-ethylenediamine cobalt (Ill) chloride. Inorg. Nucl. Chem., 34, 3915-3916. https://doi.org/10.1016/0022-1902(72)80039-3.

    [14] Kitson, R E. (1950). Simultaneous spectrophotometric determination of cobalt, copper and iron. Anal. Chem., 22, 664-667. https://doi.org/10.1021/ac60041a012.

    [15] Kolthoff, I. M.; Mechan, E. J. &Carr, E. M. (1953). Mechanism of initiation of emulsion polymerization by persulfate. J. Am. Chem. Soc., 75, 1439-1441. https://doi.org/10.1021/ja01102a048.

View Full Article: