Intermolecular interactions, spectroscopic and theoretical investigation of 4-aminoacetophenone
-
2019-05-05 https://doi.org/10.14419/ijac.v7i1.14703 -
4-Aminoacetophenone, NBO Analysis, Vibrational Spectra, Hirshfeld Surface Analysis, Intermolecular Interactions. -
Abstract
The molecular structure of 4-aminoacetophenone (PAAP) was determined by DFT calculations using different basis sets. The structural parameters, electronic properties and vibrational wavenumbrers of the optimized geometry have been determined. The vibrational wave-numbers of the fundamental modes of the title compound have been precisely assigned and analyzed and the theoretical results are compared with the experimental vibrations observing a very good correlation. TD-DFT approach was applied to assign the electronic transitions ob-served in the experimental UV-vis spectrum. The molecular electrostatic potential map was used to identify the possible electrophilic and nucleophilic sites. Natural bond orbital (NBO) analysis and atoms in molecules (AIM) approach are applied in order to quantify the relative strength of hydrogen bonding interactions and to account their effect on the stabilities of molecular arrangements. In addition, a detailed exploration of the intermolecular interactions that stabilizes the crystal packing has been performed by using the Hirshfeld surface analysis.
Â
Â
Â
-
References
[1] Griffin, R.N. (1968). Phosphoresceence of aromatic ketones in low-temperatures glasses, Photochem. Photobiol., 7, 159-173. https://doi.org/10.1111/j.1751-1097.1968.tb08003.x.
[2] Lutz, H., Duval, M.C., Breheret, E., Lindqvist, L. (1972), Solvent effects on acetophenone photoreduction studied by laser photolysis, J. Phys. Chem., 76, 821-822. https://doi.org/10.1021/j100650a004.
[3] Parimala, K., Balachandran, V. (2013), Structural study, NCA, FT-IR, FT-Raman spectral investigations, NBO analysis and thermodynamic properties of 2’,4’-difluoroacetophenone by HF and DFT calculations, Spectrochim. Acta A, 110, 269-284. https://doi.org/10.1016/j.saa.2013.03.058.
[4] P.M. Sivakumar, G. Sheshayan, M. Doble, (2008), Experimental and QSAR of Acetophenones as Antibacterial Agents, Chem. Biol. Drug Des. 72, 303-313. https://doi.org/10.1111/j.1747-0285.2008.00702.x.
[5] A.M. Balan, O. Florea, C. Moldoveanu, G. Zbancioc, D. Iurea, I.I. Mangalagiu,(2009) Diazinium salts with dihydroxyacetophenone skeleton: syntheses and antimicrobial activity, Eur.J. Med. Chem. 44, 2275-2279. https://doi.org/10.1016/j.ejmech.2008.06.017.
[6] V.P. Singh, S. Singh, A. Katiyar, (2009), Synthesis, physico-chemical studies of manganese (II), cobalt (II), nickel (II), copper (II) and zinc (II) complexes with some p-substituted acetophenone benzoylhydrazones and their antimicrobial activity, J. Enzyme Inhib. Med. Chem. 24, 577-88. https://doi.org/10.1080/14756360802318662.
[7] V.P. Singh, A. Katiyar, S. Singh. (2008), Synthesis, characterization of some transition metal (II) complexes of acetone p-amino acetophenone salicyloyl hydrazone and their anti-microbial activity, Biometals 21, 491-501. https://doi.org/10.1007/s10534-008-9136-9.
[8] H.Z. Wei, L.C. Wing, H.L. Yuan, S.S. Yan, C.L. Yong, H.Y. Chi, (1997), Synthesis of Hydroxyflavanones from Substituted Acetophenones and Benzaldehydes in the Presence of Silica Gel, Boric Acid and Piperidine Heterocycles. 45, 71-75. https://doi.org/10.3987/COM-96-7611.
[9] M.J. Climent, A. Corma, S. Iborra, A. Velty, (2004), Activated hydrotalcites as catalysts for the synthesis of chalcones of pharmaceutical interestJ. Catal., 221,474-. https://doi.org/10.1016/j.jcat.2003.09.012.
[10] M. Sittig, Handbook of Toxic and Hazardous Chemicals and Carcinogens, second ed., Noyes Publications, Park Ridge, NJ, 1985.
[11] K.C. Medhi, (1977), The vibrational spectra of 2-, 3-and 4- acetylpyridine, Ind. J. Phys. 51A, 399.
[12] A. Gambi, S. Gioorgianni, A. Passerini, R. Visinoni, S. Ghersetti, (1980), Infrared studies of acetophenone and its deuterated derivatives, Spectrochim. Acta 36A, 871-878. https://doi.org/10.1016/0584-8539(80)80036-5.
[13] P. Sett, S. Chattopadhyay, P.K. Mallick, (2000), Normal coordinate analyses of three isomeric acetylpyridines and acetophenone J. Raman Spectrosc. 31, 177-184. https://doi.org/10.1002/(SICI)1097-4555(200003)31:3<177::AID-JRS509>3.0.CO;2-K.
[14] M.J. Frisch, J.A. Pople, J.S. Binkley, J. Chem. Phys. 80 (1984) 3265. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al- Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. González, J.A. Pople, Gaussian 03, revision C.02, Gaussian Inc., Wallingford, CT, 2004.
[15] A.D. Becke, (1993), Densityâ€functional thermochemistry. III. The role of exact exchange J., Chem. Phys. 98, 5648-5652. https://doi.org/10.1063/1.464913.
[16] C. Lee, W. Yang, R.G. Parr, (1988), Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B 37, 785. https://doi.org/10.1103/PhysRevB.37.785.
[17] M.J. Frisch, A.B. Nielsm, A.J. Holder, Gaussview User Manual, Gaussian, Pittsburgh, 2008.
[18] M.H. Jamróz, (2013), Vibrational energy distribution analysis (VEDA): scopes and limitations, Spectrochim. Acta A 114, 220-230. https://doi.org/10.1016/j.saa.2013.05.096.
[19] R.F.W. Bader, Atoms in Molecules, A Quantum Theory, Claderon Press, Oxford, 1990.
[20] V. Arjunan, L. Devi, R. Subbalakshmi, T. Rani, S. Mohan. (2014), Synthesis, vibrational, NMR, quantum chemical and structure-activity relation studies of 2-hydroxy-4-methoxyacetophenone, Spectrochim. Acta A, 130, 164-177. https://doi.org/10.1016/j.saa.2014.03.121.
[21] E.D. Glendening, J.K. Badenhoop, A.D. Reed, J.E. Carpenter, F.F. Weinhold, Theoretical Chemistry Institute, University of Wisconsin, Madison, WI, 1996.
[22] D.M. Chipman, (2000), Reaction field treatment of charge penetration J. Chem. Phys. 112, 5558. https://doi.org/10.1063/1.481133.
[23] J.J. McKinnon, D. Jayatilaka, M.A. Spackman, (2007), Towards quantitative analysis of intermolecular interactions with Hirshfeld surfaces, Chem. Commun., 37, 3814-3816. https://doi.org/10.1039/b704980c.
[24] M.A. Spackman, D. Jayatilaka, (2009), Hirshfeld Surface Analysis, CrystEngComm 11, 19-32. https://doi.org/10.1039/B818330A.
[25] J.J. McKinnon, M.A. Spackman, A.S. Mitchel. (2004), Novel tools for visualizing and exploring intermolecular interactions in molecular crystals. Acta Crystallogr. 60B, 627-68. https://doi.org/10.1107/S0108768104020300.
[26] S.K. Wolf, D.J. Grimwood, J.J. McKinnon, M.J. Turner, D. Jayatilaka, M.A. Spackman, CrystalExplorer (version 3.1), University of Western, Australia, 2012.
[27] M. Haisa, S. Kashino, T. Yuasa, K. Akigawa, (1976), Topochemical studies. IX. The crystal and molecular structure of p-aminoacetophenone Acta Cryst. B 32 (1976) 1326-1328. https://doi.org/10.1107/S0567740876012600.
[28] A. Saeed, M. Ifzan Arshad, M. Bolte, A.C. Fantoni, Z. Y. Delgado Espinoza, M.F. Erben, (2016), On the roles of close shell interactions in the structure of acyl-substituted hydrazones: An experimental and theoretical approach.,Spectrochim. Acta A 157, 138-145. https://doi.org/10.1016/j.saa.2015.12.026.
[29] R.F.W. Bader, Atoms in Molecules, A Quantum Theory, Claderon Press, Oxford,1990.
[30] H. Roohi, A. Ebrahimi, F. Alirezapoor, M. Hadealirezahi,(2005), AIM and NBO analyses of N–N rotational barrier in monocyclic nitrosamine compounds Chem. Phys. Lett. 409, 212-218. https://doi.org/10.1016/j.cplett.2005.05.022.
[31] M. Rocha, A. Di Santo, J.M. Arias, D.M. Gil, A. Ben Altabef, (2015) Ab-initio and DFT calculations on molecular structure, NBO, HOMO-LUMO study and a new vibrational analysis of 4-(Dimethylamino) Benzaldehyde., Spectrochim. Acta A 136, 635-643. https://doi.org/10.1016/j.saa.2014.09.077.
[32] D.M. Gil, M.E. Defonsi Lestard, O. Estévez- Hernández, J. Duque, E. Reguera (2015), Quantum chemical studies on molecular structure, spectroscopic (IR, Raman, UV-Vis), NBO and HOMO-LUMO analysis of 1-benzyl-3-(2-furoyl) thiourea, Spectrochim. Acta A 145, 553-562. https://doi.org/10.1016/j.saa.2015.02.071.
[33] D.M. Gil, O.E. Piro, G.A. EcheverrÃa, M. E. Tuttolomondo, A. Ben Altabef (2013), Layered crystal structure, conformational and vibrational properties of 2,2,2-trichloroethoxysulfonamide: an experimental and theoretical study, Spectrochim. Acta A 116, 122-131. https://doi.org/10.1016/j.saa.2013.07.013.
[34] U. Koch, P.L.A. Popelier, (1995), Characterization of C-H-O Hydrogen Bonds on the Basis of the Charge Density J. Phys. Chem. 99, 9747-9754. https://doi.org/10.1021/j100024a016.
[35] E. Espinosa, E. Molins, C. Lecomte, (1998), Hydrogen bond strengths revealed by topological analyses of experimentally observed electron densitiesChem. Phys. Lett. 285, 170-173. https://doi.org/10.1016/S0009-2614(98)00036-0.
[36] I. Rozas, I. Alkorta, J. Elguero, (2011), Behavior of Ylides Containing N, O, and C Atoms as Hydrogen Bond Acceptors, J. Am. Chem. Soc. 122, 11154-11161. https://doi.org/10.1021/ja0017864.
[37] E. Scrocco, J. Tomasi,(1979), Electronic Molecular Structure, Reactivity and Intermolecular Forces: An Euristic Interpretation by Means of Electrostatic Molecular Potentials Adv. Quantum Chem. , 11, 115-193. https://doi.org/10.1016/S0065-3276(08)60236-1.
[38] F.J. Luque, J.M. Lopez, M. Orozco, (2000), Perspective on “Electrostatic interactions of a solute with a continuum. A direct utilization of ab initio molecular potentials for the prevision of solvent effectsâ€Theor. Chem. Acc. 103, 343-345. https://doi.org/10.1007/978-3-662-10421-7_56.
[39] C. Jelsch, K. Ejsmont, L. Huder,(2014), The enrichment ratio of atomic contacts in crystals, an indicator derived from the Hirshfeld surface analysis, IUCrJ 1, 119-128. https://doi.org/10.1107/S2052252514003327.
[40] M. Govindarajan, S. Periandi, K. Carthigayen,(2012), FT-IR and FT-Raman spectra, thermo dynamical behavior, HOMO and LUMO, UV, NLO properties, computed frequency estimation analysis and electronic structure calculations on α-bromotoluene Spectrochim. Acta A 97,411-422. https://doi.org/10.1016/j.saa.2012.06.028.
[41] M. Govindarajan, M, Karabacak, (2012), Spectroscopic properties, NLO, HOMO-LUMO and NBO analysis of 2,5-Lutidine Spectrochim. Acta A 96, 421-435. https://doi.org/10.1016/j.saa.2012.05.067.
[42] C. Ravikumar, I.H. Joe, V.S. Jayakumar, (2008), Charge transfer interactions and nonlinear optical properties of push–pull chromophore benzaldehyde phenylhydrazone: A vibrational approach., Chem. Phys. Lett. 460 552-558. https://doi.org/10.1016/j.cplett.2008.06.047.
[43] A. Fu, D. Du, Z. Zhou, (2003), Density functional theory study of vibrational spectra of acridine and phenazine Spectrochim. Acta A 59, 245-253. https://doi.org/10.1016/S1386-1425(02)00169-5.
[44] M.K. Subramanian, P.M. Anbarasan, V. Ilangovan, S. Moorthy Babu, (2008), FT-IR, NIR-FT-Raman and gas phase infrared spectra of 3-aminoacetophenone by density functional theory and ab initio Hartree–Fock calculations Spectrochim. Acta A 71, 59-67. https://doi.org/10.1016/j.saa.2007.11.013.
[45] D. Lin-Vien, N.B. Colthup, W.G. Fateley, J.G. Grasselli, The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules, Academic Press, 1991.
[46] D. Sajan, I.H. Joe, V.S. Jayakumar, (2006), NIRâ€FT Raman, FTâ€IR and surfaceâ€enhanced Raman scattering spectra of organic nonlinear optic material: pâ€hydroxy acetophenone, J. Raman Spectrosc. 37, 508-519. https://doi.org/10.1002/jrs.1424.
[47] V. Arjunan, M. Kalaivani, S. Senthikumari, S. Mohan, (2013), Vibrational, NMR and quantum chemical investigations of acetoacetanilde, 2-chloroacetoacetanilide and 2-methylacetoacetanilide, Spectrochim. Acta A 115, 154-174. https://doi.org/10.1016/j.saa.2013.06.003.
[48] L.P. Avendaño Jiménez, G.A. EcheverrÃa, O.E. Piro, S.E. Ulic, J.L. Jios, (2013), Vibrational, electronic, and structural properties of 6-nitro- and 6-amino-2-trifluoromethylchromone: an experimental and theoretical study, J. Phys. Chem. A 117, 2169-2180. https://doi.org/10.1021/jp312683s.
[49] C. Sridevi, G. Shanthi, G. Velraj, (2012), Structural, vibrational, electronic, NMR and reactivity analyses of 2-amino-4H-chromene-3-carbonitrile (ACC) by ab initio HF and DFT calculations. Spectrochim. Acta A 89, 46-54. https://doi.org/10.1016/j.saa.2011.12.050.
[50] E. Lizarraga, D.M. Gil, G.A. EcheverrÃa, O.E. Piro, C.A.N. Catalán, A. Ben Altabef, (2014), Synthesis, crystal structure, conformational and vibrational properties of 6-acetyl-2,2-dimethyl-chromane. Spectrochim. Acta A 127, 74-84. https://doi.org/10.1016/j.saa.2014.02.035.
-
Downloads
Additional Files
-
How to Cite
Rocha, M., Di Santo, A., Ben Altabef, A., & M. Gil, D. (2019). Intermolecular interactions, spectroscopic and theoretical investigation of 4-aminoacetophenone. International Journal of Advanced Chemistry, 7(1), 1-12. https://doi.org/10.14419/ijac.v7i1.14703Received date: 2018-06-26
Accepted date: 2019-04-18
Published date: 2019-05-05