Study the effects of calcinations and evolution of crystallographic parameters of two Tunisian natural phosphates

  • Authors

    • Ahmed Chaabouni Faculté des Sciences de Sfax - Tunisie
    • Chaker Chtara Directeur de Recherches Groupe Chimique Tunisien - Gabès - Tunisie
    • Ange Nzihou Ecole des Mines d'Albi-Carmaux - Toulouse - France
    • Hafed El Feki Faculté des Sciences de Sfax - Tunisie
    2014-02-05
    https://doi.org/10.14419/ijac.v2i1.1664
  • Abstract

    Tunisian natural phosphate is a highly form of fluorapatite, carbonate fluorapatite, also known as “francolite”. The presence of carbonate in mineral phosphates influences their reactivity overlooked acid attack, but their presence requires a supplementary adding of sulfuric acid in the plants of production of phosphoric acid; and causing the formation of foams in the reactors during the addition of sulfuric acid. The presence of carbonates in high contents reduces the price value of phosphate rock.

    We propose in this work to study thermally the decomposition of two carbonated fluorapatite in a range of temperature between ambient and 1000°C; and the variation of the value of crystallographic parameters of the two samples of phosphate. The X-ray diffraction technique is used for this mineralogical study.

    By referring to the crystallographic parameters of the lattice of phosphate, we note that the increase in temperature decarbonated the francolite which is transformed largely to a fluoroapatite. In addition, it was reported that the first decarbonation is around 650°C translated the kinetics of decomposition of the carbonate ions of the type B associated with a vaccum, while the second decarbonation is around 1000°C and related to the thermal decomposition of the entity of CO3F, generated by the decomposition of carbonate ions of type B and A. The presence of these ions would be the result of a reorganization of the crystal lattice.

     

    Keywords: Carbonated fluoroapatite, effect of calcinations, mineralogical study, Tunisian natural phosphate, x-ray diffraction.

  • References

    1. Becker P (1989) Phosphates and Phosphoric acid, Marcel Decker.
    2. Bonel G (1972) Annales de Chimie (Paris) 7, 127-144.
    3. CHAABOUNI A, CHTARA C, NZIHOU A & EL FEKI H (2013) Kinetic Study of the Dissolution of Tunisian Natural Phosphate or Francolite in Industrial Phosphoric Acid. Journal of Advances in Chemistry 6, 908-916.
    4. Chien SH & Black CA (1976) Free energy of formation of car-bonate apatites in some phosphate rocks. Soil Science Society of America Journal 40, 234-239.
    5. EL FEKI H, KHATTECH I, JEMAL M & Rey C (1994) Décomposition thermique d'hydroxyapatites carbonatées sodées Thermochimica Acta 237, 99-110.
    6. EL FEKI H, KHATTECH I & JEMAL M (1991) Décomposition thermique de fluorapatites carbonatées sodées. Journal de Chimie Physique 88, 1885-1892.
    7. EL FEKI H, Rey C & Vignoles M (1991) Carbonate ions in apatites: Infrared investigations in the ν4 CO3 domain. Calcified Tissue International 49, 269-274.
    8. Elliott JC (1994) Structure and Chemistry of the Apatites and Other Calcium Orthophosphates. Elsevier, Amsterdam.
    9. Jahnke RA (1984) the synthesis and solubility of carbonate fluorapatite. American Journal of Science 290, 58-78.
    10. Kumar D (1980) Calcination of phosphate rocks. Chemie Ingenieur Technik 52, 736–740.
    11. LABARTHE JC, Bonel G & MONTEL G (1973) Annales de Chimie Paris 8, 289-301.
    12. Lafon JP, Champion E & Assollant DB (2002) Caractérisation d'apatites phosphocalciques arbonatées. Matériaux.
    13. Legeros RZ (1967) Ph.D., Thesis, New York University.
    14. Legeros RZ, Legeros JP, Trautz OR & Klein E (1964) Journal of Dental Research 43, 75.
    15. Lehr JR, McClellan GH, Smith JP & Frazier AW (1972) Phosphates dans l'agriculture: Colloque international sur les phosphates minéraux solides, Toulouse.
    16. McConnell D (1973) Apatite: its Crystal Chemistry, Min-eralogy, Utilization, and Geologic and Biologic Occurrences, Springer-Verlag, Berlin.
    17. Memminger GG, Waggaman WH & Whitney WT (1930) the calcination or enrichment of phosphate rock. Journal of Industrial and Engineering Chemistry 22, 443–446.
    18. Ozer AK (2003) the characteristics of phosphate rock in a fluidized bed for the upgrading. Advanced Powder Technology 14, 33–42.
    19. SLACK AV (1968) PHOSPHORIC ACID, MARCEL DEKKER. INC, NEW YORK, and Volume I, Part I, 129.
    20. Trombe JC, Bonel G & Montel G (1967) Comptes Rendus de l'Académie des Sciences Series C 265, 1113.
    21. Trombe JC (1973) Contribution à l'étude de la décomposi-tion et de la réactivité de certaines apatites hydroxylées et carbonatées. Annales de Chimie 8, 251-269.
    22. Vignoles M (1984) Contribution à l’étude des apatites carbonatées de type B. Thèse d’état. Toulouse.
    23. Vignoles C (1973) Thèse de 3ème cycle, Université Paul Sabatier de Toulouse.
    24. Waggaman WmH (1953) PHSPHORIC ACID, PHOS-PHATES AND PHOSPHATIC FERTILIZERS. SECOND EDITION, Second Printing, 183.
    25. Young RA (1973) Colloque International CNRS, Paris 230, 21.
  • Downloads

    Additional Files

  • How to Cite

    Chaabouni, A., Chtara, C., Nzihou, A., & El Feki, H. (2014). Study the effects of calcinations and evolution of crystallographic parameters of two Tunisian natural phosphates. International Journal of Advanced Chemistry, 2(1), 24-26. https://doi.org/10.14419/ijac.v2i1.1664

    Received date: 2013-12-28

    Accepted date: 2014-01-24

    Published date: 2014-02-05