Kinetics and mechanism of oxidation of cetirizine hydrochloride, an anti-allergy agent by Mn(VII) in acidic medium

  • Abstract
  • Keywords
  • References
  • PDF
  • Abstract

    The kinetics and mechanism of oxidation of cetirizine hydrochloride by Mn(VII) in acidic medium was studied spectrophotometrically. The electron transfer reaction between MnO4- and the drug have been studied over the range 2.0 ? 103 [cetirizine hydrochloride] ? 6.0, 2.5 ? pH ? 4.5 and 295 K ? T ? 313 K in aqueous medium. The electron transfer reaction shows first order dependence in [MnO4-] T and [cetirizine hydrochloride]. The rate of the reaction was found to increase with increasing pH of the medium. The conjugate base of the reactant drug and MnO4- reacts to produce products. The activation parameters ?H? (kJ mol-1) and ?S? (JK-1 mol-1) for the electron transfer reaction was found to be 33.93 and -143.00. The product of the reaction was cetirizine N-oxide.

    Keywords: Cetirizine, Oxidation, Kinetics, Cetirizine N-Oxide, Spectrophotometer.

  • References

    1. Atkin Peter and de Paulo Julio, Atkin's physical chemistry, (2012); 929; 9th Edition, Oxford University Press, U.K.
    2. Arrizabalaga A, Andrex Ordax F J, Fernandez - Arorgliz M and Poche R,Int.J.ChemicalKinetics,(1996);28;799-805.<799::AID-KIN2>3.0.CO;2-I.
    3. Hassan R M, Fawzy A, Ahmed G A, Zaafarany I A, Asghar B H, Khairou A S, J. Mol. Cat. (2009); 309; 95-102.
    4. Hassan R M, Abdel-Kader D A, Ahmed S M, Fawzy A, Zaafarany I A, Takagi H D, Chem. Commun, (2009);11; 184-190.
    5. ZaafaranyIA,Int.J.Chem(2010);2;193.
    6. Mohanty B, Behera J, Acharya S, Mohanty P, Patnaik A, K, Chemical Sci. Trans., (2013);2(1); 51-60 .
    7. Simandan T, Sun J, Dix T A, Biochem J, (1998); 335; 233-240.
    8. Terashima Y, Fukuoka M, Ohtsuka F, Inoue H, Nucleic Acid Symp, Sem, (1999); 4; 35.
    9. Freeman F, Fuselier C O and Karchetski E M, Tetrahedron letter, (1975); 16; 2133. (00)75315-9.
    10. Freeman F, Fuslier C O, Dalton C E, Davidson P A, Karchetski E M, Krochman D E, Johnson M N, Jones N K, J. Am. Chem. Soc., (1981); 3; 1154 .
    11. Mudalior U D, Choyrey V R, Verma R S, Shastry V R, J. Indian Chem. Soc. (1983);60; 561.
    12. Verma R S, Rdddy M J, Shastry V R, J. Chem.Society, Perkin Trans. (1976);2;469.
    13. Perzez Benito J F, Mata - Perer F and Brillas E, Can. J. (1987); 65, 2329.
    14. Zammar S, Jally M, Germansimov O V, Int. J. Chem. Kinetics, (1992);24;145
    15. Timmanagoudar P L, Hiremath G A, Nandibewoor S T, Transition Met.Chem.(1997);22;193.
    16. Timmanagoudar P L, Hiremath G A, Nandibewoor S T, Polish J. Chem. (1996);70;1459-1467.
    17. Vogel A I, Text book of Quantitative chemical Analysis, (1989); 5th edition;Longman group, UK .
    18. Mendham J, Denney R C, Barnes J D, Thomas M, Sivasankar B, UK, Vogels Quantitative Chemical Analysis (2011);p 368;6th Edition, Pearson.
    19. Nakamato K, Joyhn Wiley and Sons Inc. Publication, (1997); 5.
    20. Dyakonov T, April Muir, Hassen Nasri, Pana Toops, Aqeel Fatmi, Pharm Res, (2010);27;1318-1324.
    21. Chimatadar S A, Kini A K, Nandibewoor S T, Ind. J. Chem. (2003);42A; 1850-1855.
    22. Amies E S, Solvent effects on reaction rates and mechanism (Academic Press), (1996); New York.
    23. Puttaswamy and Sukhdev Any Bull Korean. Chem. Soc. (2012); 33; 3544-3550.




Article ID: 3130
DOI: 10.14419/ijac.v2i2.3130

Copyright © 2012-2015 Science Publishing Corporation Inc. All rights reserved.